【无标题】

本文详细介绍了OpenCV库中的各种图像处理函数参数,包括颜色空间转换、滤波(如方框、均值、高斯、中值和双边)、形态学操作、边缘检测(Canny、Sobel、Laplacian)、霍夫变换以及人脸识别的相关参数。
摘要由CSDN通过智能技术生成

@xingOpenCV参数说明

        OPENCV_value[(int)OPENCV.cvt_color, 0] = 11;//颜色空间转换   参数一   转换标识符
        OPENCV_value[(int)OPENCV.cvt_color, 1] = 0;//颜色空间转换   参数二   通道
        OPENCV_value[(int)OPENCV.cvt_color, 2] = 0;//颜色空间转换
        OPENCV_value[(int)OPENCV.cvt_color, 3] = 0;//颜色空间转换
        OPENCV_value[(int)OPENCV.boxfilter, 0] = -1;//方框滤波  参数一  图像深度
        OPENCV_value[(int)OPENCV.boxfilter, 1] = 5;//方框滤波   参数二   size内核宽度
        OPENCV_value[(int)OPENCV.boxfilter, 2] = 5;//方框滤波   参数三   size内核高度
        OPENCV_value[(int)OPENCV.boxfilter, 3] = 0;//方框滤波
        OPENCV_value[(int)OPENCV.blur, 0] = 5;//均值滤波   参数一  size内核宽度
        OPENCV_value[(int)OPENCV.blur, 1] = 5;//均值滤波   参数二   size内核高度
        OPENCV_value[(int)OPENCV.blur, 2] = 0;//均值滤波
        OPENCV_value[(int)OPENCV.blur, 3] = 0;//均值滤波
        OPENCV_value[(int)OPENCV.gaussianblur, 0] = 5;//颜色空间转换   参数一   size内核宽度
        OPENCV_value[(int)OPENCV.gaussianblur, 1] = 5;//颜色空间转换   参数二   size内核宽度
        OPENCV_value[(int)OPENCV.gaussianblur, 2] = 0;//颜色空间转换   参数三   sigmaX
        OPENCV_value[(int)OPENCV.gaussianblur, 3] = 0;//颜色空间转换   参数四   sigmaY
        OPENCV_value[(int)OPENCV.medianblur, 0] = 5;//中值滤波   参数一  孔径线性尺寸
        OPENCV_value[(int)OPENCV.medianblur, 1] = 0;//中值滤波   
        OPENCV_value[(int)OPENCV.medianblur, 2] = 0;//中值滤波
        OPENCV_value[(int)OPENCV.medianblur, 3] = 0;//中值滤波
        OPENCV_value[(int)OPENCV.bilateralfilter, 0] = 25;//双边滤波  参数一  像素相邻直径
        OPENCV_value[(int)OPENCV.bilateralfilter, 1] = 25;//双边滤波   参数二   颜色空间滤波器sigmacolor
        OPENCV_value[(int)OPENCV.bilateralfilter, 2] = 25;//双边滤波   参数三   坐标空间滤波器sigmaspace
        OPENCV_value[(int)OPENCV.bilateralfilter, 3] = 0;//双边滤波
        OPENCV_value[(int)OPENCV.dilate, 0] = 0;//膨胀  参数一  MorphShapes 只能取0 1 2
        OPENCV_value[(int)OPENCV.dilate, 1] = 5;//膨胀   参数二   size内核宽度
        OPENCV_value[(int)OPENCV.dilate, 2] = 5;//膨胀   参数三   size内核高度
        OPENCV_value[(int)OPENCV.dilate, 3] = 0;//膨胀  
        OPENCV_value[(int)OPENCV.erode, 0] = 0;//腐蚀  参数一  MorphShapes 只能取0 1 2
        OPENCV_value[(int)OPENCV.erode, 1] = 5;//腐蚀   参数二   size内核宽度
        OPENCV_value[(int)OPENCV.erode, 2] = 5;//腐蚀   参数三   size内核高度
        OPENCV_value[(int)OPENCV.erode, 3] = 0;//腐蚀   
        OPENCV_value[(int)OPENCV.morphologyex, 0] = 0;//高级形态学变换  参数一  MorphTypes 只能取0 1 2 ..5 6 ,7不能用
        OPENCV_value[(int)OPENCV.morphologyex, 1] = 0;//高级形态学变换   参数二  MorphShapes 只能取0 1 2
        OPENCV_value[(int)OPENCV.morphologyex, 2] = 5;//高级形态学变换   参数三   size内核宽度
        OPENCV_value[(int)OPENCV.morphologyex, 3] = 5;//高级形态学变换   参数四   size内核高度
        OPENCV_value[(int)OPENCV.floodfill, 0] = 100;//漫水填充  参数一  目标点X
        OPENCV_value[(int)OPENCV.floodfill, 1] = 100;//漫水填充   参数二   目标点Y
        OPENCV_value[(int)OPENCV.floodfill, 2] = 100;//漫水填充   参数三   Scalar 颜色
        OPENCV_value[(int)OPENCV.floodfill, 3] = 0;//漫水填充 
        OPENCV_value[(int)OPENCV.pyrup, 0] = 0;//尺寸放大     只能放大2倍
        OPENCV_value[(int)OPENCV.pyrup, 1] = 0;//尺寸放大     
        OPENCV_value[(int)OPENCV.pyrup, 2] = 0;//尺寸放大
        OPENCV_value[(int)OPENCV.pyrup, 3] = 0;//尺寸放大
        OPENCV_value[(int)OPENCV.pyrdown, 0] = 0;//尺寸缩小     只能缩小2倍
        OPENCV_value[(int)OPENCV.pyrdown, 1] = 0;//尺寸缩小     
        OPENCV_value[(int)OPENCV.pyrdown, 2] = 0;//尺寸缩小
        OPENCV_value[(int)OPENCV.pyrdown, 3] = 0;//尺寸缩小
        OPENCV_value[(int)OPENCV.resize, 0] = 20;//尺寸调整   参数一  宽度放大倍数/10
        OPENCV_value[(int)OPENCV.resize, 1] = 20;//尺寸调整   参数二   高度放大倍数/10
        OPENCV_value[(int)OPENCV.resize, 2] = 0;//尺寸调整   参数三   插值方式 0 1 2 3 4 7 8 16
        OPENCV_value[(int)OPENCV.resize, 3] = 0;//尺寸调整
        OPENCV_value[(int)OPENCV.threshold, 0] = 100;//固定阈值化   参数一  阈值
        OPENCV_value[(int)OPENCV.threshold, 1] = 255;//固定阈值化   参数二   阈值最大值
        OPENCV_value[(int)OPENCV.threshold, 2] = 3;//固定阈值化   参数三   ThresholdTypes 0 1 2 3 4 7 8 16
        OPENCV_value[(int)OPENCV.threshold, 3] = 0;//固定阈值化
        OPENCV_value[(int)OPENCV.canny, 0] = 150;//边缘检测CANNY   参数一  阈值1   推荐两个比例为2:1到3:1中间
        OPENCV_value[(int)OPENCV.canny, 1] = 50;//边缘检测CANNY   参数二   阈值2  两个阈值一大一小 无先后顺序
        OPENCV_value[(int)OPENCV.canny, 2] = 3;//边缘检测CANNY   参数三   sobel算子孔径大小
        OPENCV_value[(int)OPENCV.canny, 3] = 0;//边缘检测CANNY
        OPENCV_value[(int)OPENCV.sobel, 0] = 1;//边缘检测SOBEL     参数一  X方向向上差分数
        OPENCV_value[(int)OPENCV.sobel, 1] = 0;//边缘检测SOBEL     参数二   Y方向向上差分数
        OPENCV_value[(int)OPENCV.sobel, 2] = 3;//边缘检测SOBEL     参数三   sobel算子核大小  只能是1 3 5 7
        OPENCV_value[(int)OPENCV.sobel, 3] = 0;//边缘检测SOBEL
        OPENCV_value[(int)OPENCV.laplacian, 0] = 0;//边缘检测LAPLACIAN     参数一    图像深度 MatType  0-7  暂时只能用cv8u
        OPENCV_value[(int)OPENCV.laplacian, 1] = 3;//边缘检测LAPLACIAN     参数二·   laplacian算子孔径大小 正奇数
        OPENCV_value[(int)OPENCV.laplacian, 2] = 1;//边缘检测LAPLACIAN      参数三   比例因子
        OPENCV_value[(int)OPENCV.laplacian, 3] = 0;//边缘检测LAPLACIAN
        OPENCV_value[(int)OPENCV.sobel, 0] = 1;//边缘检测SCHARR     参数一  X方向向上差分数
        OPENCV_value[(int)OPENCV.sobel, 1] = 0;//边缘检测SCHARR     参数二   Y方向向上差分数
        OPENCV_value[(int)OPENCV.sobel, 2] = 0;//边缘检测SCHARR     
        OPENCV_value[(int)OPENCV.sobel, 3] = 0;//边缘检测SCHARR
        OPENCV_value[(int)OPENCV.convertscaleabs, 0] = 10;//图像快速增强     参数一  alpha = 1.0, // 乘数因子
        OPENCV_value[(int)OPENCV.convertscaleabs, 1] = 0;//图像快速增强     参数二   beta = 0.0 // 偏移量
        OPENCV_value[(int)OPENCV.convertscaleabs, 2] = 0;//图像快速增强     输入值为其十倍
        OPENCV_value[(int)OPENCV.convertscaleabs, 3] = 0;//图像快速增强
        OPENCV_value[(int)OPENCV.addweighted, 0] = 5;//图像融合  参数一  图片1的融合比例 0.5 放大了十倍
        OPENCV_value[(int)OPENCV.addweighted, 1] = 5;//图像融合   参数二  图片1的融合比例 0.5
        OPENCV_value[(int)OPENCV.addweighted, 2] = 0;//图像融合   参数三   误差
        OPENCV_value[(int)OPENCV.addweighted, 3] = 0;//图像融合   参数四   此参数由打开文件替代
        OPENCV_value[(int)OPENCV.houghlines, 0] = 150;//霍夫标准变换     参数一    累加平面的阈值 
        OPENCV_value[(int)OPENCV.houghlines, 1] = 0;//霍夫标准变换     参数二  选择是否显示原图像 0显示 其他不显示
        OPENCV_value[(int)OPENCV.houghlines, 2] = 10;//霍夫标准变换      参数三   线条阿尔法值 默认为1 放大十倍
        OPENCV_value[(int)OPENCV.houghlines, 3] = 8;//霍夫标准变换   参数四   原图阿尔法值 默认为0.8放大十倍
        OPENCV_value[(int)OPENCV.houghlinep, 0] = 150;//霍夫累计概率变换     参数一    累加平面的阈值 
        OPENCV_value[(int)OPENCV.houghlinep, 1] = 0;//霍夫累计概率变换     参数二  选择是否显示原图像 0显示 其他不显示
        OPENCV_value[(int)OPENCV.houghlinep, 2] = 50;//霍夫累计概率变换      参数三   min线段长度
        OPENCV_value[(int)OPENCV.houghlinep, 3] = 10;//霍夫累计概率变换   参数四   max线段长度
        OPENCV_value[(int)OPENCV.houghcircles, 0] = 5;//霍夫圆变换     参数一    圆心之间最小距离 
        OPENCV_value[(int)OPENCV.houghcircles, 1] = 200;//霍夫圆变换     参数二  canny的高阈值
        OPENCV_value[(int)OPENCV.houghcircles, 2] = 100;//霍夫圆变换      参数三   圆心累加器阈值
        OPENCV_value[(int)OPENCV.houghcircles, 3] = 0;//霍夫圆变换   参数四   圆半径最大值 //最小值已设置为0
        OPENCV_value[(int)OPENCV.remap, 0] = 0;//重映射     参数一    0 1 2 3
        OPENCV_value[(int)OPENCV.remap, 1] = 0;//重映射      参数二   放大缩小倍数
        OPENCV_value[(int)OPENCV.remap, 2] = 0;//重映射   
        OPENCV_value[(int)OPENCV.remap, 3] = 0;//重映射 
        OPENCV_value[(int)OPENCV.warpaffine, 0] = 0;// 仿射变换    参数一    0为对图像进行翻转旋转  其他为(1)进行压缩旋转 
        OPENCV_value[(int)OPENCV.warpaffine, 1] = 10;//仿射变换     参数二  0旋转角度1倍  1左上角往中心移动比例100倍
        OPENCV_value[(int)OPENCV.warpaffine, 2] = 10;//仿射变换     参数三   0尺寸大小10倍  1右上角往中心移动比例100倍
        OPENCV_value[(int)OPENCV.warpaffine, 3] = 20;//仿射变换     参数四   1左下角往中心移动比例100倍
        OPENCV_value[(int)OPENCV.equalizehist, 0] = 0;//直方图均衡化     无参数 输入灰度图即可
        OPENCV_value[(int)OPENCV.equalizehist, 1] = 0;//直方图均衡化  
        OPENCV_value[(int)OPENCV.equalizehist, 2] = 0;//直方图均衡化   
        OPENCV_value[(int)OPENCV.equalizehist, 3] = 0;//直方图均衡化  
        OPENCV_value[(int)OPENCV.facedetection, 0] = 0;//人脸识别     参数一   0为使用Haar 其他为使用LBP
        OPENCV_value[(int)OPENCV.facedetection, 1] = 0;//人脸识别  
        OPENCV_value[(int)OPENCV.facedetection, 2] = 0;//人脸识别   
        OPENCV_value[(int)OPENCV.facedetection, 3] = 0;//人脸识别  
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值