PAT刷题模板——LCA最近公共祖先

前序+中序找某两个节点的最近公共祖先

根据前序+中序建树的思想找LCA

void lca(int root, int start, int end, int a, int b){
    // root: pre的根下标 start:中序起始下标 end:中序结束下标
    // a和b是需要找到的公共节点
    if(start > end) return;
	// pos定义为map<int, int>, 是值与中序下标之间的映射
    int i = pos[pre[root]]; // 找到根节点在中序中的位置
    int aIn = pos[a], bIn = pos[b]; // 找到a 和 b 节点在中序中的位置
    if(aIn < i && bIn < i)
        // 公共祖先在左子树中, 递归调用查找
        lca(root + 1, start, i - 1, a, b);
    else if((aIn < i && bIn > i) || (aIn > i && bIn < i))
        // root 为公共祖先
        printf("LCA of %d and %d is %d.\n", a, b, pre[root]);
    else if(aIn > i && bIn > i)
        // 公共祖先在右子树中, 递归调用查找
        lca(root + (i - start) + 1, i + 1, end, a, b);
    else if(aIn == i) // a是根的情况 a是b的祖先结点
        printf("%d is an ancestor of %d.\n", a, b);
    else if(bIn == i)
        printf("%d is an ancestor of %d.\n", b, a);
    return;
}

传统的链表形式可以先遍历得到pre和in两个数组,然后进行查找

根据前序和中序的特点来查找LCA

先补充结论:

  1. 中序遍历中 a 和 b 的最小公共祖先 lca 一定在 a ~ b 的区间内 (LNR)
  2. 先序遍历中 a 和 b 的最小公共祖先 lca 一定在 a 和 b 之前 (NLR);后序遍历中 a 和 b 的最小公共祖先 lca 一定在 a 和 b 之后 (LRN)
  3. 先序遍历中第一个遇到的在 a ~ b(中序) 之间的元素即为 lca (先序特点是先到lca结点 再到a b结点);后序遍历中最后一个遇到的在 a ~ b 之间的元素即为 lca

想不明白的可以画个图,看一看前序和中序是如何遍历整棵树的

void lca_t(int a, int b, int n){
	int lcaIn = 0, aIn = pos[a], bIn = pos[b];
    for(int i = 1; i < n + 1; i++){
        // 遍历先序序列
        lcaIn = pos[pre[i]];
        if(lcaIn >= min(aIn, bIn) && lcaIn <= max(aIn, bIn))
            break;
    }
    if(aIn == lcaIn) printf("%d is an ancestor of %d.\n", a, b);
    else if (bIn == lcaIn) printf("%d is an ancestor of %d.\n", b, a);
    else printf("LCA of %d and %d is %d.\n", a, b, in[lcaIn]);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值