前序+中序找某两个节点的最近公共祖先
根据前序+中序建树的思想找LCA
void lca(int root, int start, int end, int a, int b){
// root: pre的根下标 start:中序起始下标 end:中序结束下标
// a和b是需要找到的公共节点
if(start > end) return;
// pos定义为map<int, int>, 是值与中序下标之间的映射
int i = pos[pre[root]]; // 找到根节点在中序中的位置
int aIn = pos[a], bIn = pos[b]; // 找到a 和 b 节点在中序中的位置
if(aIn < i && bIn < i)
// 公共祖先在左子树中, 递归调用查找
lca(root + 1, start, i - 1, a, b);
else if((aIn < i && bIn > i) || (aIn > i && bIn < i))
// root 为公共祖先
printf("LCA of %d and %d is %d.\n", a, b, pre[root]);
else if(aIn > i && bIn > i)
// 公共祖先在右子树中, 递归调用查找
lca(root + (i - start) + 1, i + 1, end, a, b);
else if(aIn == i) // a是根的情况 a是b的祖先结点
printf("%d is an ancestor of %d.\n", a, b);
else if(bIn == i)
printf("%d is an ancestor of %d.\n", b, a);
return;
}
传统的链表形式可以先遍历得到pre和in两个数组,然后进行查找
根据前序和中序的特点来查找LCA
先补充结论:
- 中序遍历中 a 和 b 的最小公共祖先 lca 一定在 a ~ b 的区间内 (LNR)
- 先序遍历中 a 和 b 的最小公共祖先 lca 一定在 a 和 b 之前 (NLR);后序遍历中 a 和 b 的最小公共祖先 lca 一定在 a 和 b 之后 (LRN)
- 先序遍历中第一个遇到的在 a ~ b(中序) 之间的元素即为 lca (先序特点是先到lca结点 再到a b结点);后序遍历中最后一个遇到的在 a ~ b 之间的元素即为 lca
想不明白的可以画个图,看一看前序和中序是如何遍历整棵树的
void lca_t(int a, int b, int n){
int lcaIn = 0, aIn = pos[a], bIn = pos[b];
for(int i = 1; i < n + 1; i++){
// 遍历先序序列
lcaIn = pos[pre[i]];
if(lcaIn >= min(aIn, bIn) && lcaIn <= max(aIn, bIn))
break;
}
if(aIn == lcaIn) printf("%d is an ancestor of %d.\n", a, b);
else if (bIn == lcaIn) printf("%d is an ancestor of %d.\n", b, a);
else printf("LCA of %d and %d is %d.\n", a, b, in[lcaIn]);
}