leetcode系列-746.使用最小花费爬楼梯

本文介绍了一种解决爬楼梯问题的动态规划方法,通过计算给定成本数组中每个台阶的最低花费,找到从下标0或1开始到达楼梯顶部的最经济路径。实例和代码展示了如何利用数学优化技巧求解,适用于计算机科学和算法设计初学者。
摘要由CSDN通过智能技术生成
题目描述:

给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。
一旦你支付此费用,即可选择向上爬一个或者两个台阶。

你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。

请你计算并返回达到楼梯顶部的最低花费。
示例 1:
输入:cost = [10,15,20]
输出:15
解释:你将从下标为 1 的台阶开始。
- 支付 15 ,向上爬两个台阶,到达楼梯顶部。
总花费为 15 。

示例 2:
输入:cost = [1,100,1,1,1,100,1,1,100,1]
输出:6
解释:你将从下标为 0 的台阶开始。
- 支付 1 ,向上爬两个台阶,到达下标为 2 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 4 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 6 的台阶。
- 支付 1 ,向上爬一个台阶,到达下标为 7 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 9 的台阶。
- 支付 1 ,向上爬一个台阶,到达楼梯顶部。
总花费为 6
/**
 * @param {number[]} cost
 * @return {number}
 */
var minCostClimbingStairs = function(cost) {
	// dp[i] 的含义: cost[i]的最小花费
	// dp[i]的递归 dp[i] =  Math.min(dp[i - 1] , dp[i - 2]) + cost[i]
	
	let length = cost.length;
	var dp = new Array(length).fill(0)
	dp[0] = cost[0]
	dp[1] = cost[1]
	
	for (let i = 2; i <= length; i ++) {
		dp[i] = Math.min(dp[i - 1], dp[i - 2]) + cost[i]
	}
	return Math.min(dp[length - 1], dp[length - 2])
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值