模仿全能扫描王实现文档和证件扫描

本文介绍如何利用图像处理技术实现类似全能扫描王的文档扫描功能,包括文档定位、仿射变换校正、图像增强处理。在实践中发现,自动定位易受背景影响,增强处理在特定情况下可能过度,需要进一步优化算法以提升泛化性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

工作中常常会用到扫描全能王这个工具,对于少量的文档电子化管理实在是太方便,并且对于商务人士来说文件的管理、打印、移动办公都是非常有用。

因为对图像处理有一定的了解和实际操作,所以在想扫描王的一些扫描功能是否可以自己实现,参考网上部分资料后搭建了一个 简单的文档扫描系统。

扫描王实现流程:
在这里插入图片描述

1 文档定位

文档定位和本人前面一个车牌识别的定位功能大同小异,对于文件扫描一般我们会手动调整一个比较好的位置,所以背景相对来说不会特别复杂。
主要步骤如下:
1、 图片尺寸变换,将图片缩小到一定的尺寸,方便界面显示;
2、将灰度化的图片进行滤波处理,我这里采用的是中值滤波;
3、直接将图片进行二值化处理;
4、图像闭运算;
5、Candy边缘检测;
6、查找轮廓;
7、根据轮廓的大小排序;
8、判断轮廓是否是矩形、轮廓的面积大小、轮廓的周长来定位文档。

2 仿射变换进行文档校正

计算查找到的轮廓四个边的长度,选取长、宽中最大值作为校正的长宽;然后计算旋转矩阵;通过旋转矩阵将图像进行校正变换。

3 图像增强处理

扫描全能王中的扫描功能不是将图片直接进行二值化处理,而是对色彩进行增强和锐化,这样背景中的白、浅黄、灰色等会变成白色,红色、蓝色等文档本身的色彩可以一定程度的保留

### 实现图像转Word文档 为了实现将图片转换为Word文档的功能,可以采用OCR技术识别图像中的文字,并利用`python-docx`库创建Word文档。以下是具体过程: 对于图像文件的处理,先使用Tesseract OCR工具识别图像内的文本内容[^1]。安装必要的依赖包之后,在Python脚本中调用`tesseract`命令完成OCR操作。 接着,借助`python-docx`库构建新的Word文档对象,并向其添加由OCR获取的文字信息以及原始图像作为插图。最后保存该Word文档至指定路径。 #### 安装所需软件包 确保已安装以下Python库: - `pytesseract`: 用于执行OCR任务。 - `Pillow`: 支持多种图形文件格式的操作接口。 - `python-docx`: 创建修改Microsoft Office Word (.docx) 文件的能力。 可以通过pip一次性安装上述所有必需品: ```bash pip install pytesseract pillow python-docx ``` 另外还需要下载并配置好[Tesseract](https://github.com/tesseract-ocr/tesseract),这是实际进行字符识别的核心组件。 #### 示例代码 下面给出一段完整的Python程序示例,展示如何读取一张或多张图片,从中抽取文本并通过`python-docx`将其写入到一个新的Word文档当中去。 ```python from PIL import Image import pytesseract from docx import Document def image_to_doc(image_paths, output_path='output.docx'): """ Convert images to a .docx file with extracted texts and original images. :param list[str] image_paths: List of paths pointing at the input images. :param str output_path: Path where resulting document should be saved (default 'output.docx'). """ # Initialize new Word document instance doc = Document() for img_path in image_paths: try: # Open an image file using Pillow's Image class img = Image.open(img_path) # Perform OCR on this image to get textual content as string ocr_result = pytesseract.image_to_string(img) # Add paragraph containing recognized text from current image p = doc.add_paragraph(ocr_result.strip()) # Insert corresponding picture below its description p = doc.add_paragraph() r = p.add_run() r.add_picture(img_path, width=Inches(4)) except Exception as e: print(f"Error processing {img_path}: ", str(e)) # Save generated document into given location doc.save(output_path) if __name__ == '__main__': # Example usage imgs = ['path/to/image1.png', 'path/to/image2.jpg'] # Replace these with actual paths image_to_doc(imgs) ``` 此段代码定义了一个名为`image_to_doc()`的函数接收两个参数:一个是包含待处理图片绝对地址列表;另一个是指定输出位置,默认命名为`output.docx`。遍历传入的每一个图片路径,依次打开它们做OCR分析并将得到的结果连同原图一起加入正在编辑的新建Word文档内。一旦全部处理完毕,则会自动把最终产物存盘。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值