Hadoop如何写注释

在Hadoop中编写注释是非常重要的,可以帮助其他开发人员理解你的代码逻辑,同时也方便自己日后的维护。下面,我们将通过一个具体的问题来展示如何在Hadoop中写注释。

问题描述

假设我们有一个需求:统计Hadoop集群中某个目录下所有文件的行数。我们需要编写一个MapReduce程序来实现这个功能。

方案

1. 编写Mapper

首先,我们需要编写Mapper类来读取输入文件,并对每一行进行统计计数。在编写Mapper的过程中,我们需要添加详细的注释来解释每个步骤的作用。

public class LineCountMapper extends Mapper<LongWritable, Text, Text, IntWritable> {

    private final static IntWritable one = new IntWritable(1);
    private Text word = new Text();

    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        // 将每一行拆分为单词
        String line = value.toString();
        
        // 统计行数
        word.set("lineCount");
        context.write(word, one);
    }
}
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
2. 编写Reducer

接着,我们需要编写Reducer类来对Mapper输出的结果进行聚合计算。同样,在编写Reducer的过程中,我们也需要添加详细的注释来解释每个步骤的作用。

public class LineCountReducer extends Reducer<Text, IntWritable, Text, IntWritable> {

    @Override
    protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
        // 对每个key进行求和
        int sum = 0;
        for (IntWritable value : values) {
            sum += value.get();
        }
        
        context.write(key, new IntWritable(sum));
    }
}
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
3. 编写Driver

最后,我们需要编写Driver类来配置整个MapReduce作业,并提交作业到Hadoop集群上运行。同样,在编写Driver的过程中,我们也需要添加详细的注释来解释每个配置项的作用。

public class LineCountDriver {

    public static void main(String[] args) throws Exception {
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf, "line count");

        job.setJarByClass(LineCountDriver.class);
        job.setMapperClass(LineCountMapper.class);
        job.setReducerClass(LineCountReducer.class);

        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);

        FileInputFormat.addInputPath(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));

        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }
}
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.

序列图

ResourceManager NameNode Client ResourceManager NameNode Client 提交作业 启动任务 任务运行完成 返回结果

关系图

erDiagram
    ENTITY {
        "File" {
            "fileID" INT,
            "fileName" STRING,
            "filePath" STRING,
            "fileSize" INT
        }
        "Job" {
            "jobID" INT,
            "jobName" STRING,
            "submitTime" TIMESTAMP
        }
    }
    RELATION {
        "File" {
            "fileID" INT
        } -- "Job" {
            "jobID" INT
        }
    }

结论

通过以上的方案,我们展示了如何在Hadoop中编写MapReduce程序来解决一个具体的问题,并演示了如何在代码中添加详细的注释来提高代码的可读性和维护性。在实际开发中,我们应该注重代码质量,养成良好的编程习惯,以便更好地协作开发和维护大规模的数据处理程序。