论文《Transfering Low-Frequency Features xxxx》《FreConv: Frequency Branch-and-Integration xxxx》

文章探讨了在无监督领域适应问题中,如何利用低频特征来改善模型在不同域上的识别性能。通过应用高斯低通滤波器提取featuremap的低频部分,研究发现这种方法能捕捉到与域无关的物体形状信息,从而提高跨域不跨类识别的稳定性。实验表明,这种方法在训练和测试中都表现出提升,证明了低频信息在跨域识别中的重要性。
摘要由CSDN通过智能技术生成

ICME 2022
链接: Transfering Low-Frequency Features for Domain Adaptation

摘要和结论
  文章以unsupervised domain adapation问题作为对象,现有一些类别做分类,但是相同的类别同时在两个域中出现,这时在domian a上训练(fine-tuning)的模型在domain b上识别相同类的样本时,会因为域不同而导致识别性能的下降,即train和test样本不属于同一个域,这是一个跨域不跨类的识别问题。
  工作发现,仅仅使用一个高斯的low-pass filter,对feature map进行低通滤波,获得feature map的低频部分,也就是在global avgpool之前加一个高斯filter,均值为 0 0 0,标准差为 m / 2 m/2 m/2 1 σ = 68 % 1\sigma=68\% 1σ=68%),在train上训练,在test上测试,就能有一定的提升。(下采样也能达到低通的效果,但是下采样的采样频率不符合香农采样定理,因此下采样并不能实现理想的低通)
  有效的原因:低频部分可以表达物体的形状,而同一个类别物体的形状是跟它本身是什么类有关系,和这个样本处于哪个域下关系不大,因为低频信息是域无关特征(domain-invariant),所以在跨域不跨类的识别问题上,学习到的类别物体特征能够在不同的域中保持鲁棒,不因域变化而对类别物体的特征表达产生什么变化。

ICME 2023
链接: FreConv: Frequency Branch-and-Integration Convolutional Networks

摘要和结论
感觉文章还有一些不清楚的地方,等待作者回应。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

__草原灰太狼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值