ICME 2022
链接: Transfering Low-Frequency Features for Domain Adaptation
摘要和结论
文章以unsupervised domain adapation问题作为对象,现有一些类别做分类,但是相同的类别同时在两个域中出现,这时在domian a上训练(fine-tuning)的模型在domain b上识别相同类的样本时,会因为域不同而导致识别性能的下降,即train和test样本不属于同一个域,这是一个跨域不跨类的识别问题。
工作发现,仅仅使用一个高斯的low-pass filter,对feature map进行低通滤波,获得feature map的低频部分,也就是在global avgpool之前加一个高斯filter,均值为
0
0
0,标准差为
m
/
2
m/2
m/2(
1
σ
=
68
%
1\sigma=68\%
1σ=68%),在train上训练,在test上测试,就能有一定的提升。(下采样也能达到低通的效果,但是下采样的采样频率不符合香农采样定理,因此下采样并不能实现理想的低通)
有效的原因:低频部分可以表达物体的形状,而同一个类别物体的形状是跟它本身是什么类有关系,和这个样本处于哪个域下关系不大,因为低频信息是域无关特征(domain-invariant),所以在跨域不跨类的识别问题上,学习到的类别物体特征能够在不同的域中保持鲁棒,不因域变化而对类别物体的特征表达产生什么变化。
ICME 2023
链接: FreConv: Frequency Branch-and-Integration Convolutional Networks
摘要和结论
感觉文章还有一些不清楚的地方,等待作者回应。