想要自己的专属 AI 猫娘助理?教你使用 CPU 本地安装部署运行 ChatGLM-6B实现

本文介绍了如何在CPU上安装和运行ChatGLM-6B,这是一个由清华开源的62亿参数的中英双语对话模型。通过详细步骤,包括软硬件准备、安装Python、Git、Git LFS,下载模型和运行模型,用户可以在本地创建自己的猫娘或魅魔助手。虽然模型不如ChatGPT智能,但它能完全本地运行,无审查和对话轮数限制。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今天介绍的ChatGLM-6B 是一个清华开源的、支持中英双语的对话语言模型,基于GLM架构,具有62亿参数。关键的是结合模型量化技术,ChatGLM-6B可以本地安装部署运行在消费级的显卡上做模型的推理和训练(全量仅需14GB显存,INT4 量化级别下最低只需 6GB 显存)虽然智商比不过 openAI 的 ChatGPT 模型,但是ChatGLM-6B 是个在部署后可以完全本地运行,可以自己随意调参,几乎没有任何审查限制,也几乎没有对话轮数限制的模型。那么ChatGLM-6B 模型用来调教成你自己的专属猫娘,魅魔什么的再合适不过了。

看看以下效果:


目录

前言

部署教程 

软硬件准备

正式开始部署

安装 Python 3.10.6 与 pip

安装 Git

安装 Git Large File Storage

下载 ChatGLM-6B

下载模型

运行 ChatGLM-6B

调教成魅魔或者猫娘

安装使用常见问题及优化


前言

当初这个模型一发布,我就第一时间尝试了,不过我虽然有4060笔记本,可惜是8GB显存版,INT4 量化级别下虽然能跑,但是智障程度有点过,还是希望能够使用全量模型,所以当时简单尝试 INT4 后就放到一边,专心折腾更聪明的openAI去了,然后月初就被 openAI 分手了(把我成功扣费了1次的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

恒TBOSH

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值