- 博客(2)
- 收藏
- 关注
原创 强化学习中值迭代算法的python实现
每次迭代,先初始化状态差值delta,遍历每个状态,若这个状态不在终点也不在障碍物,则遍历它的四个动作,利用动作状态值函数求这个状态下采取这个动作的值函数,并将这个值函数和上一个动作的值函数进行对比,保留这个状态下最大的值函数。最后,再判断值函数的变化delta是否小于阈值theta,若小于则停止迭代,最后得到的值函数矩阵V就是最优值函数。#当然也可以自己设置概率。P是状态转移概率矩阵,P中的每个元素指的是从状态S选择动作a后状态转移成S’的概率,在这个问题中状态的表示是二维的,即用坐标表示状态。
2023-06-17 10:54:39 603
原创 路径规划问题的遗传算法实现(python代码)
遗传算法是模拟达尔文生物进化论的自然选择和机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。该算法通过数学的方式,利用计算机仿真运算,将问题的求解过程转换成类似生物进化中的染色体基因的交叉、变异等过程。
2023-06-04 16:04:47 4760 7
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人