ES初探之——shard和replica

ES中shard和replica

  1. index包含多个shard
  2. 每个shard都是一个最小工作单元,承载部分数据,lucene实例,完整的建立索引和处理请求的能力
  3. 增减节点时,shard会自动在nodes中负载均衡
  4. primary shard和replica shard,每个document肯定只存在于某一个primary shard以及其对应的replica shard中,不可能存在于多个primary shard
  5. replica shard是primary shard的副本,负责容错,以及承担读请求负载
  6. primary shard的数量在创建索引的时候就固定了,replica shard的数量可以随时修改
  7. primary shard的默认数量是5,replica默认是1,默认有10个shard,5个primary shard,5个replica shard
  8. primary shard不能和自己的replica shard放在同一个节点上(否则节点宕机,primary shard和副本都丢失,起不到容错的作用),但是可以和其他primary shard的replica shard放在同一个节点上

在这里插入图片描述

当索引创建完成的时候,主分片的数量就固定了,但是复制分片的数量可以随时调整。
让我们在集群中唯一一个空节点上创建一个叫做blogs的索引。默认情况下,一个索引被分配5个主分片,但是为了演示的目的,我们只分配3个主分片和一个复制分片(每个主分片都有一个复制分片):

当索引创建完成的时候,主分片的数量就固定了,但是复制分片的数量可以随时调整。
让我们在集群中唯一一个空节点上创建一个叫做blogs的索引。默认情况下,一个索引被分配5个主分片,但是为了演示的目的,我们只分配3个主分片和一个复制分片(每个主分片都有一个复制分片):
PUT /blogs
{
   "settings" : {
      "number_of_shards" : 3,
      "number_of_replicas" : 1
   }
}

附带索引的单一节点集群: 有一个索引的单一节点集群
在这里插入图片描述

我们的集群现在看起来就像上图——三个主分片都被分配到Node 1。
在同一个节点上保存相同的数据副本是没有必要的,如果这个节点故障了,
那所有的数据副本也会丢失。

如果我们启动了第二个节点,这个集群看起来就像下图。
双节点集群——所有的主分片和复制分片都已分配: 

在这里插入图片描述

第二个节点已经加入集群,三个复制分片(replica shards)也已经被分配了
——分别对应三个主分片,这意味着在丢失任意一个节点的情况下依旧可以保证数据的完整性。

文档的索引将首先被存储在主分片中,然后并发复制到对应的复制节点上。
这可以确保我们的数据在主节点和复制节点上都可以被检索。
随着应用需求的增长,我们该如何扩展?
如果我们启动第三个节点,集群会重新组织自己

在这里插入图片描述

参考来源:https://blog.csdn.net/jiaojiao521765146514/article/details/82761645
https://es.xiaoleilu.com/010_Intro/00_README.html

<think>嗯,用户之前问过关于Elasticsearch分布式架构如何处理节点故障的问题,现在又接着问分片副本。看来他们可能是在学习ES的分布式机制,或者是正在搭建集群需要了解这些概念。 首先,用户之前的问题是关于节点故障的自动处理,所以现在问分片副本应该是想深入理解数据存储冗余的机制。分片副本是ES实现高可用扩展性的核心,需要详细解释两者的区别联系。 用户可能不太清楚分片副本的作用,或者混淆了它们的概念。需要明确分片是数据分割的单位,而副本是分片的复制,用于故障恢复负载均衡。可能还需要举例说明,比如索引如何被分成多个分片,每个分片如何有副本。 另外,用户可能关心实际应用中的配置,比如如何设置分片数副本数,最佳实践是什么。需要提到分片过多或过少的影响,副本数量的调整对集群性能的影响,以及如何根据硬件资源来规划。 还要注意用户可能的误区,比如认为增加副本可以无限提高性能,但实际上副本会占用存储计算资源。需要解释平衡可用性资源消耗的重要性。 用户可能还需要知道分片副本在故障恢复中的具体作用,比如主分片失效时副本如何提升为主分片,恢复过程中数据如何同步。这部分可以结合之前的节点故障处理机制来回答,形成知识连贯性。 最后,可能还需要提到一些常见问题,比如分片无法分配的原因,如何监控分片状态,以及调整分片副本时的注意事项。这些实际操作的内容对用户来说可能非常实用。</think>### Elasticsearch 分片(Shard)与副本(Replica)详解 --- #### 一、核心概念对比 | 特性 | **分片(Shard)** | **副本(Replica)** | |-------------|--------------------------------------|--------------------------------------| | **本质** | 数据的最小物理存储单元 | 分片的完整拷贝 | | **类型** | 主分片(Primary) / 副本分片(Replica)| 只能是主分片的副本 | | **读写权限** | 主分片可读写,副本分片默认只读 | 仅响应查询请求 | | **创建时机** | 索引创建时固定数量(不可修改) | 可动态调整数量 | | **作用目标** | 解决**数据水平扩展**问题 | 解决**高可用****查询负载均衡**问题 | --- #### 二、技术实现细节 ##### 1. **分片工作机制** - **分片公式**: $$ \text{总数据存储量} = \text{主分片数} \times (1 + \text{副本数}) \times \text{单分片数据量} $$ - **路由机制**: 文档通过哈希算法分配到指定主分片: $$ \text{shard\_num} = hash(\_routing) \% \text{num\_primary\_shards} $$ - **分片限制**: 单个分片建议大小在 `10GB-50GB`(超过 `100GB` 可能影响性能) ##### 2. **副本运作原理** - **实时同步**: 主分片通过 `Translog` 保证数据变更顺序,副本采用 `pull` 模式同步数据 - **一致性模型**: - **同步写入**:需多数副本确认(通过 `wait_for_active_shards` 参数控制) - **异步刷新**:默认每秒刷新(`refresh_interval=1s`) --- #### 三、配置与优化策略 ##### 1. **分片数量决策** - **黄金法则**: 分片总数 = 节点数 &times; 单节点承载分片数(建议 `500-1000`/节点) 例如:3节点集群,单节点承载上限 800 分片 → 总容量约 `2400` 分片 - **动态调整限制**: 主分片数创建后不可变,只能通过 `Reindex API` 重建索引调整 ##### 2. **副本配置技巧** ```json // 创建索引时指定分片配置 PUT /my_index { "settings": { "number_of_shards": 3, // 主分片数 "number_of_replicas": 2 // 每个主分片的副本数 } } // 动态修改副本数(实时生效) PUT /my_index/_settings { "number_of_replicas": 1 } ``` ##### 3. **性能优化要点** - **冷热分离架构**: 使用 `ILM(Index Lifecycle Management)` 将旧索引副本数降为 `0` - **写入优化**: 临时关闭副本(`index.number_of_replicas=0`)提升批量导入速度 - **查询加速**: 增加副本可实现读请求的**多副本负载均衡** --- #### 四、故障场景应对 ##### 1. **分片未分配(UNASSIGNED)** - **常见原因**: - 磁盘空间不足(`85%` 水位线触发只读模式) - 节点属性不匹配分配规则(如 `rack` 标签约束) - **解决方案**: ```bash # 强制分配分片(慎用) POST /_cluster/reroute { "commands": [{ "allocate_stale_primary": { "index": "my_index", "shard": 0, "node": "node-1", "accept_data_loss": true } }] } ``` ##### 2. **副本同步延迟** - **检测方法**: ```bash GET /_cat/shards?v&h=index,shard,prirep,state,docs,store ``` - **处理方案**: - 检查网络带宽(`indices.recovery.max_bytes_per_sec`) - 优化映射字段类型,减少 `_source` 体积 --- #### 五、最佳实践总结 1. **容量规划**: - 预估数据总量 → 确定主分片数 - 根据 SLA 要求 → 确定副本数(生产环境至少 `1` 副本) 2. **硬件匹配原则**: - 单个分片数据量 ≈ 节点内存的 `1/10`(如 `64GB` 内存 → 分片大小 `6-7GB`) - 使用 `SSD` 磁盘降低副本同步延迟 3. **监控关键指标**: - `indices.search.fetch_current`(副本查询负载) - `indices.indexing.index_current`(主分片写入压力) - `thread_pool` 的 `write`/`search` 队列深度 4. **特殊场景处理**: - **时序数据**:使用 `Rollover API` 自动创建新分片 - **全局搜索**:设置 `preference=_primary` 强制主分片查询 --- #### 六、经典误区解析 - **误区1**:"增加副本数一定能提升查询性能" ✅ 实际:当查询为 `CPU 密集型` 时,过多副本可能引发线程竞争 - **误区2**:"主分片越多越好" ✅ 实际:分片过多会导致 `元数据管理开销` 指数级增长 - **误区3**:"副本可以替代备份" ✅ 实际:副本不能防范 `误删除`,仍需 `Snapshot` 实现真正备份 --- 通过合理配置分片与副本,可在**数据可靠性**、**查询性能**、**硬件成本**之间找到最佳平衡点。建议通过 `Elasticsearch Rally` 进行分片方案的基准测试验证。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值