- 博客(122)
- 收藏
- 关注
原创 Origin科研绘图——“95%置信区间”
简单理解,我们抽取100个样本,当你不断改变样本的时候,由100个样本构造的总体参数的100个置信区间中,有95%的区间包含了总体参数的真正值,5%没包含,这个95%称为置信水平,即1-α。在统计中,一个概率样本的置信区间(Confidence interval)是对这个样本的某个总体参数的区间估计。置信区间给出的被测量参数的测量值的可信程度,即前面所要求的"一定概率"。置信区间展现的是这个参数的真实值有一定概率落在测量结果的周围的程度。Origin科研绘图,将杂乱的点线图转换为精美的分类点线图。
2026-01-15 10:58:51
478
原创 SPSS教程——多因素方差分析
从饲料类型的多重比较中可以看到,A饲料相对B饲料和C饲料的显著性都小于0.05,说明A饲料与BC饲料对体重的影响都具有显著性差异,A饲料对体重的影响最为明显。多因素方差分析不仅能够分析多个因素对观测变量的独立影响,更能够分析多个控制因素的交互作用能否对观测变量的分布产生显著影响,进而最终找到有利于观测变量的最优组合。“全因子”模型:此项为系统默认,一旦选择此项,系统将分析所有因素变量、协变量主效应以及因素与因素间的交互作用,但不包括协变量的交互作用。(1)“因子”列表:其中显示主对话框中选择的因素。
2026-01-15 10:57:08
816
原创 Origin科研绘图——“子弹图”
不论是同类业务横向对比,还是单个业务的目标完成率展示,子弹图都能以极高的可读性呈现。通常由浅灰、深灰等不同颜色的背景条带构成,表示不同等级的绩效区间,如“差”“合格”“良好”等。Origin科研绘图——审美疲劳,将“双分组柱状图”修改为“双分组条形图”以深色柱形表示,是用户最关注的核心数据,如实际完成的销售额、实际产量等。Origin科研绘图——多曲线的“点线图”拆分为“叠层图”Origin科研绘图——“双分组”的3D堆积墙型图。Origin科研绘图——绘制“弦图”的3种数据形式。
2026-01-14 16:50:46
493
原创 Origin科研绘图——3D散点图
3D 散点图(3D Scatter Plot)是一种将多变量观测数据映射到三维空间中,以独立点的形式展示数据分布、结构与关联关系的可视化方法,广泛用于探索性数据分析、科研建模与工程问题定位。Origin科研绘图——审美疲劳,将“双分组柱状图”修改为“双分组条形图”Origin科研绘图,将杂乱的点线图转换为精美的分类点线图。Origin科研绘图——多曲线的“点线图”拆分为“叠层图”Origin科研绘图,将杂乱的点线图转换为精美的分类点线图。Origin科研绘图,将杂乱的点线图转换为精美的分类点线图。
2026-01-14 16:49:03
1027
原创 Origin科研绘图——“普通2D柱状图”升级为“3D XYY并排圆柱状图”
3D XYY 并排圆柱体图(3D XYY Side-by-Side Cylinder Chart),是在三维坐标系中,在同一 X 轴类别下并排展示 多个 Y 数据系列,非常适合比较同一条件下多组处理或多方案之间的差异。Y 轴(并排维度):不同处理组Control、Treatment 1、Treatment 2、Treatment 3。X 轴:时间或分类变量(Base、30 min、60 min、90 min、120 min)Z 轴:数值大小(如浓度,单位 mmol/L)图例:通过不同颜色区分不同处理组。
2026-01-13 20:43:53
696
原创 Origin——如何实现“分段拟合”
Origin科研绘图——手把手教你理解“箱线图”(学习箱线图,这一篇就够了!Origin科研绘图——审美疲劳,将“双分组柱状图”修改为“双分。Origin科研绘图——多曲线的“点线图”拆分为“叠层图”Origin科研绘图——将“普通柱状图”升级为“棒棒糖图”Origin科研绘图——手把手教你绘制“普通小提琴图”Origin科研绘图——手把手教你绘制“上下柱状图”Origin科研绘图——绘制“弦图”的3种数据形式。Origin科研绘图——手把手教你绘制“2D饼图”
2026-01-13 20:42:00
363
原创 Origin科研绘图——“点线图”优化为“重叠柱状图”
右图采用重叠直方图后,每一组数据在各区间的频数分布被清晰展示,更能直观反映数据的真实结构。而直方图是直接基于数据分箱统计得到,能真实显示每个区间的数据量,让局部波动、极值段、分布密集区等信息更加明显,避免了“看上去很光滑但信息丢失”的问题。而右图通过透明度叠加,让多组数据在同一坐标系下直接“堆叠竞争”,哪一组在哪个区间占优势一目了然,可视化辨识度明显提升。对于展示样本分布或组间分布差异这一类情境,直方图是更标准、更常用的统计图类型,符合统计绘图习惯,具有更强的学术表达规范性和说服力。
2026-01-13 20:40:56
378
原创 Origin科研绘图——堆积面积图+点线图
堆积面积图 + 点线图是一种将整体规模与内部结构演化和关键指标变化趋势同时呈现在同一坐标体系中的复合可视化图形。有更多Origin/Matlab/Python绘图教程和配色,SPSS数据分析教程等!面积层 → 谁在贡献、贡献如何变化。明确区分“总量走势”和“组成变化”用户来源结构 + 活跃用户数趋势。点线图能避免“顶部轮廓被误读”多来源能耗构成 + 总能耗变化。实验条件变化 + 关键响应指标。先画堆积面积图部分,数据类型为。演示“部分–整体–趋势”关系。成本构成 + 利润率变化。解释驱动因素随时间的演化。
2026-01-09 10:30:18
913
原创 Origin科研绘图——“非线性曲线拟合”(多项式拟合)
非线性拟合是指在数据建模过程中,因变量与自变量之间的关系不能表示为参数的线性组合,需要采用指数函数、对数函数、幂函数、Logistic 函数、非线性微分方程等模型形式,通过迭代优化方法估计模型参数,使模型输出尽可能逼近实验或观测数据的过程。不同初始值或不同算法可能得到不同的参数解,需要通过残差分析、置信区间或多次拟合验证结果可靠性。在复现文献中的非线性关系曲线时,可通过非线性拟合提取模型参数,用于不同研究之间的定量比较。相比线性拟合,非线性拟合需要多次迭代计算,对计算资源和算法稳定性要求更高。
2026-01-09 10:28:42
822
原创 Origin科研绘图——3D百分比堆叠柱状图
3D 百分比堆积柱状图(3D 100% Stacked Column Chart) 是在普通百分比堆积柱状图基础上加入三维效果的一种图形,用于展示各类别中不同组成部分所占 相对比例(百分比结构),强调的是“结构占比而不是绝对数值”,同时通过 3D 形态增强视觉表现力。有更多Origin/Matlab/Python绘图教程和配色,SPSS数据分析教程等!所有柱子高度一致,便于直接比较结构比例。收入结构占比(主营、附加、其他)强调“占比变化”而非绝对值大小。市场份额构成(不同品牌占比)人口结构(年龄段占比)
2026-01-05 12:43:09
745
原创 Origin科研绘图——3D堆叠柱状图
3D 堆叠柱状图(3D Stacked Column Chart) 是在普通堆叠柱状图基础上加入三维视觉效果的一种图形,用于同时展示 总量大小 以及 不同组成部分在整体中的占比结构,并借助 3D 形态增强视觉层次感和空间感。
2026-01-05 12:40:01
813
原创 Origin科研绘图——3D堆积墙型图
图中每一堵“墙”代表一个类别、一个时间点或一个分组对象,其高度表示该组数据的总体规模,而墙体内部按不同颜色分层堆积的区域,则对应不同子项目或组成部分的数值或比例,从而实现“总量 + 构成”的双重信息表达。与普通的堆积柱状图相比,它将柱形以“墙”的形式呈现,并通过三维效果增强视觉层次感,使数据呈现更具空间感和冲击力。,比如三维视角可能带来透视失真,使精确读取数值不如二维图直观,因此更适合展示与解释,而不适合用于严格精确测量。Origin科研绘图——审美疲劳,将“双分组柱状图”修改为“双分组条形图”
2026-01-04 11:25:27
530
原创 Origin科研绘图——绘制“弦图”的3种数据形式
弦图(Chord Diagram)是一种用于展示多类别之间相互关系与联系强度的可视化图形,常见于社会科学研究、市场分析、人口迁移研究、交通流动分析、生物信息学等领域。弦图(Chord Diagram)是一种用于展示多类别之间相互关系与联系强度的可视化图形,常见于社会科学研究、市场分析、人口迁移研究、交通流动分析、生物信息学等领域。也是依次点击绘图,分组图,弦图。弦图的优势在于能够在一张图中直观呈现复杂、多维的关系网络,兼具美观性与信息密度,是理解复杂系统结构与交互关系的重要工具。
2026-01-04 11:23:50
413
原创 Origin科研绘图——桑基图
是一种用于展示“流动”(flow)关系的可视化图表,常用于呈现能量流、物质流、资金流、信息流等在不同节点之间的传递和分配情况。它最大的特点是用“宽度可变的流线”来直观表示数量大小——流线越宽,代表流量越大,因此特别适合理解复杂系统中资源从哪里来、到哪里去、以及不同路径所占比例。为该流程对应的数量。只需将各个流程逐项填写在 A、B、C 三列即可,流程的排列顺序并非关键,确保起点、终点及对应数值准确才是最重要的。与柱状图、饼图不同,桑基图不仅展示“多少”,还展示“从哪到哪”。至此,本期教程就结束啦。
2026-01-04 11:23:04
815
原创 Origin科研绘图——堆积面积图
摘要:堆积面积图是一种通过叠加多条数据序列来展示整体趋势和构成比例的统计图形。它不仅能显示总量变化,还能直观反映各部分的贡献度与结构变化。本文介绍了堆积面积图的特点(如视觉直观、突出累积效果)、适用场景(如经济结构分析、销售构成)及绘图步骤(包括数据准备、颜色调整等)。教程提供了详细的Origin软件操作指南,并鼓励读者留言反馈感兴趣的专题。更多免费教程可通过主页获取。
2026-01-03 11:42:52
308
原创 Origin科研绘图——堆积直方图
本文介绍了堆积直方图的概念、作用及特点。堆积直方图在普通直方图基础上叠加多个类别数据,通过颜色区分不同类别在区间的占比。文章详细说明了如何解读堆积直方图,包括观察整体分布、类别占比结构及变化趋势。同时提供了绘制步骤:选择数据、调整图例、修改颜色和间距等设置,最终生成包含丰富信息的图表。该图表适用于同时分析连续数据和分类数据的场景。
2026-01-03 11:42:00
1048
原创 Origin科研绘图——按照某个基准值进行“分色显示”的折线图
分色折线图绘制教程:基于基准线实现数据可视化对比 本教程介绍如何制作分色折线图,通过颜色区分数据在基准线(如平均值)上下的波动情况。操作步骤包括:1)导入XY数据绘制基础点线图;2)调整坐标轴刻度和图例位置;3)设置线条颜色基于Y值正负变化;4)添加基准线作为分区依据;5)完善网格线和文字标注。这种可视化方式能清晰展示数据偏离基准的程度、阶段性特征和整体趋势,适用于气温、经济指标等连续变量的分析。教程包含详细操作指引和示例数据参考。
2026-01-03 11:40:51
309
原创 Origin科研绘图——“重叠柱状图”
左图的点线图本质上更接近“频数曲线”,虽然能看出大致趋势,但对数据真实分布形态(离散、集中程度、偏态情况等)表达有限;右图采用重叠直方图后,每一组数据在各区间的频数分布被清晰展示,更能直观反映数据的真实结构。而直方图是直接基于数据分箱统计得到,能真实显示每个区间的数据量,让局部波动、极值段、分布密集区等信息更加明显,避免了“看上去很光滑但信息丢失”的问题。对于展示样本分布或组间分布差异这一类情境,直方图是更标准、更常用的统计图类型,符合统计绘图习惯,具有更强的学术表达规范性和说服力。
2026-01-03 11:40:06
517
原创 Origin科研绘图——3D 百分比堆积墙型图
3D 百分比堆积墙型图(3D Percent Stacked Area/Wall Chart)是一种在三维效果下展示的堆积面积图。
2026-01-02 13:23:26
351
原创 Origin科研绘图——直方图
是一种用于展示连续型数据分布情况的统计图形。它通过将数据按区间(称为“组”或“组距”)划分,再以矩形柱子的高度或面积表示各区间内数据出现的频数或频率,从而展示数据在不同范围上的集中程度与分布形态。
2026-01-02 13:22:02
499
原创 Origin科研绘图——按照某个基准值进行“分色显示”的折线图
颜色切换所对应的时间分段能够帮助我们迅速判断不同历史时期的状态差异,例如是否存在持续偏高或持续偏低的阶段,从而辅助进行趋势判断或气候变化分析。相比统一颜色的折线图,这种“分色显示”更具有强调性与指向性,使读者无需复杂计算就能对“高于平均值多少次”以及“低于多少次”形成直观印象。Origin科研绘图——审美疲劳,将“双分组柱状图”修改为“双分组条形图”Origin科研绘图,将杂乱的点线图转换为精美的分类点线图。Origin科研绘图——多曲线的“点线图”拆分为“叠层图”
2026-01-01 12:22:45
646
原创 Origin科研绘图——审美疲劳,将“双分组柱状图”修改为“双分组条形图”
双分组带误差棒条形图(Grouped Bar Chart with Error Bars),通过清晰的布局、颜色区分和误差信息示意,使数据表达更加完整和可解释。该图纵轴展示两个主要条件(如实验1、实验2),每个条件下含有多个分组数据(group1~group5)。清晰展示 实验条件间差异(如实验1 vs 实验2);该图纵轴展示两个主要条件(如实验1、实验2),每个条件下含有多个分组数据(group1~group5)。清晰展示 实验条件间差异(如实验1 vs 实验2);实验数据波动范围(如标准差 SD)
2026-01-01 12:21:15
489
原创 SPSS——非参数检验-“K个独立样本非参数检验”
反之,如果各组秩的均值存在显著差异,则是多组数据无法混合,某些组的数值普遍偏大,另一些组的数值普遍偏小的结果,可以认为多个总体的分布有显著差异。:如果多个总体的中位数无显著差异,或者说多个总体有共同的中位数,那么这个共同的中位数应在各样本组中均处在中间位置上。:如果多个总体的中位数无显著差异,或者说多个总体有共同的中位数,那么这个共同的中位数应在各样本组中均处在中间位置上。与两独立样本的曼-惠特尼U检验类似,也是计算一组样本的观察值小于其他组样本的观察值的个数。多个独立样本来自的多个总体的分布无显著差异。
2025-12-24 10:11:17
250
原创 SPSS——“Cox回归”
在下表方程中的变量给出回归系数(b值)、标准误(SE)、检验统计量瓦尔德卡方值、自由度,显著性(P值)、EXP(B)(HR值)及95%CI可信区间。分类变量编码,组织学类型有两个值,低分化和高分化。在进行编码的时候对组织学类型选择第一个,其余选择的是最后一个。因此低分化编码是0,高分化的编码是1。从下图生存分析函数中可以看到,随着生存事件的增加,新方法和传统方法生存率都在下降。分析病人结局与组织学类型,治疗方法,淋巴结是否转移,肿瘤浸润程度,生存时长的关系。至此,本期教程就结束啦,希望对同学有帮助~
2025-12-24 10:00:34
388
原创 Origin科研绘图——手把手教你绘制“热图”
通常,热图使用颜色渐变来展示数据的变化,如红色表示较高的值,蓝色表示较低的值,绿色表示中等值等。它通过不同的颜色深浅或不同的色彩来表示数据的变化和分布,常用于分析具有大量数据点的情况,帮助快速发现数据中的模式、趋势和异常。它通过不同的颜色深浅或不同的色彩来表示数据的变化和分布,常用于分析具有大量数据点的情况,帮助快速发现数据中的模式、趋势和异常。横轴和纵轴的组合构成了一个网格,网格中的每个单元格都代表了某种数据的值。每个单元格的颜色通过色标的映射与其对应的数据值相联系,颜色的变化即表现了数据值的变化。
2025-12-24 09:55:32
580
原创 SPSS——“寿命表分析”
后续我会持续更新并分享更多实用的绘图与数据处理技巧,包括 Origin / MATLAB / Python 的高质量绘图教程、科学配色方案、排版规范,以及 SPSS 数据分析流程、统计方法讲解与案例解析 等内容。,根据特定人群年龄组死亡率编制的一种统计表。至本时间段上限的生存函数估计值,由之前时间段的生存分析比例相乘,例如0.89=0.97*0.91。出现癌症复发的患者比例,即每个时间段内的复发概率,例如,0.03=3/111.5。出现所关心事件的人数,即癌症复发人数,例如在0~1年内,有3人复发。
2025-12-23 10:00:58
498
原创 SPSS——“Kaplan-Meier生存分析”
中可以看到实验组总数22,事件数11,删失个案数11。对照组总数22,事件数16,删失个案数6:在生存分析表中给出生存时间、生存状态、积累生存比例、累积事件数和剩余个案数等信息。本案例将数据分为。
2025-12-23 09:55:50
888
原创 SPSS——生存分析基础
后续我会持续更新并分享更多实用的绘图与数据处理技巧,包括 Origin / MATLAB / Python 的高质量绘图教程、科学配色方案、排版规范,以及 SPSS 数据分析流程、统计方法讲解与案例解析 等内容。”并非特指人或动物的生命长短,而是泛指某一事件发生之前所经历的。失效事件的准确界定是生存分析的基础,必须严格依据研究目的——”,指在随访过程中,观察对象出现了研究中所定义的结局。
2025-12-22 12:22:22
817
原创 Origin科研绘图——手把手教你理解“箱线图”
分别是箱体、数据、箱体+重叠数据、箱体[右]+数据[左]、箱体[左]+数据[右]、条形、条形+重叠数据、条形[右]+数据[左]、条形[左]+数据[右]、半箱体[右]+数据[左]、半箱体[左]+数据[右],这11种选项的设置效果依次如下表所示。由美国统计学家John Tukey于1977年在其著作《Exploratory Data Analysis》中首次引入,是一种统计学图表,用于展示数据的分布、集中趋势和离散程度,广泛应用于数据分析中,尤其在比较不同数据集的分布特征时,具有很大的实用价值。
2025-12-22 12:21:15
1144
原创 SPSS——多维尺度分析
其基本思想是:依据对象之间的相似度(或不相似度)信息,通过适当的降维技术,将这些关系映射到一个低维空间中,并以“点与点之间的距离”来直观表示对象之间的接近程度。距离越远,则表示差异越大。下表给出二维模型的迭代过程,我们前面在【选项】参数设置时,采用软件默认最大迭代次数30,当迭代的收敛值小于0.001时将终止。点击主面板右上角的【模型】按钮,将弹出模型参数设置的对话框,如果数据是对称正方形的格式(本案例是这样的),那么此处参数可以不用设置,采取软件默认设置即可;,它们用于估计多维尺度分析的信度和效度,
2025-12-21 12:46:22
466
原创 Origin科研绘图——手把手教你绘制“子弹图”
它常用于销售追踪、绩效评估与业务监控等场景,以其信息密度高、视觉干扰少的优势,成为替代传统仪表盘或柱状图的有效方案。该图表通过层级化的视觉编码,在有限宽度内同时传递“绩效状态”“目标对比”与“等级分布”三层信息,适合密集排列于仪表盘或报告中,实现高效的多指标监控与分析。通常由浅灰、深灰等不同颜色的背景条带构成,表示不同等级的绩效区间,如“差”“合格”“良好”等。以深色柱形表示,是用户最关注的核心数据,如实际完成的销售额、实际产量等。位于左侧或图表标题位置,用于说明该条子弹图代表的业务或指标名称。
2025-12-21 12:42:25
525
原创 SPSS——可靠性分析
举例而言,对于“图书馆利用情况及满意度调查问卷”的第一部分第1题,若对同一个人相隔3天,问同一个问题,若第一次回答,被调查者选择A、第二次回答选择C、第三次回答选择D,则说明对于该问题调查结果的信度低,因为调查结果的差异较大。举例而言,对于“图书馆利用情况及满意度调查问卷”的第一部分第1题,若对同一个人相隔3天,问同一个问题,若第一次回答,被调查者选择A、第二次回答选择C、第三次回答选择D,则说明对于该问题调查结果的信度低,因为调查结果的差异较大。如果将“名解”删除,试卷的α系数将变为0.810。
2025-12-19 10:11:47
353
原创 SPSS——信度分析简介
复本信度是同样一组样本,一次性回答两份问卷,比如同样一组学生连续做两份同样难度水平的试卷。然后通过计算两份样本相关系数,从而进行信度质量衡量,由于实际操作过程中有诸多客观条件限制,重测信度指同样的样本,在不同的时间点回答同样一份问卷。折半信度就是将所有量表题项分为两半,计算两部分各自的信度以及相关系数,进而估计整个量表的信度。,指的是检验结果的一致性程度或可靠程度。信度系数越大,代表信度越高。
2025-12-19 10:07:04
404
原创 Origin科研绘图——手把手教你绘制“气泡图”
信息浓缩、对比直观,能够在有限空间内展现数据之间的相关性、分布情况和相对差异;总体来说,气泡图既保留了散点图的精细关系表达,又通过“气泡”提升了信息密度,让复杂数据能够以更直观、生动的方式呈现。不过,为保证可读性,需要控制气泡数量与重叠度,并注意大小比例的正确感知,才能发挥出图表的最佳效果。总体来说,气泡图既保留了散点图的精细关系表达,又通过“气泡”提升了信息密度,让复杂数据能够以更直观、生动的方式呈现。不过,为保证可读性,需要控制气泡数量与重叠度,并注意大小比例的正确感知,才能发挥出图表的最佳效果。
2025-12-19 10:03:15
785
原创 SPSS——对应分析-“多重对应分析”
与简单对应分析相同,多重对应分析的基本思想在于对列联表中的频数或比例信息进行降维处理,并将各变量不同类别以点的形式映射到低维空间中。与简单对应分析相同,多重对应分析的基本思想在于对列联表中的频数或比例信息进行降维处理,并将各变量不同类别以点的形式映射到低维空间中。如果有的变量是单分类的名义变量、有序分类变量或者离散的数值型变量,则选择“某些变量并非多重名义”。离散化菜单内容如下,离散化”对话框,在变量列表中选中某个变量后,可以在方法的下拉菜单选择离散化的方法,将不符合要求的变量进行转换。
2025-12-18 10:41:29
648
原创 SPSS——对应分析基础
以点的形式在较低维的空间中表示联列表的行与列中各元素的比例结构,可以在二维空间更加直观的通过空间距离反映两个分类变量间的关系。与简单对应分析一样,多重对应分析的基本思想也是以点的形式在较低维的空间中表示联列表的行与列中各元素的比例结构。- 对应分析输出的图形通常是二维的,这是一种降维的方法,将原始的高维数据按一定规则投影到二维图形上。观察对应关系,从而将抽象的交叉表信息形象化,直观地解释变量的不同类别之间的联系,适合于。为两个以上时,再使用以上方法就很难直观揭示变量之间的关系,由此引入。
2025-12-18 10:26:41
258
原创 Origin科研绘图——将“堆积柱状图”和“点线图”升级为双Y轴“堆积柱状图”+“点线图”
图表的左侧 Y 轴通常用来表示堆积柱状图的数据,例如不同类别在某个时间段或某个条件下的组成结构,柱子内部的堆积部分用于表现各细分项的贡献,这使得不仅可以看到总量随时间的变化,还能直观比较各子类的占比。右侧 Y 轴则多用于绘制折线图或点线图,常表示趋势性、辅助性或关键指标的数据,如增长率、均值变化、某种指数等。双Y轴堆积柱状点线图是一种将堆积柱状图、折线图以及双纵轴结构结合在一起的高级可视化形式,常用于同时展示多个不同量纲、不同类型的数据指标,并突出它们之间的关系和变化趋势。我们下期见,一起进步、一起成长!
2025-12-17 10:16:29
696
原创 Origin科研绘图——手把手教你绘制“误差带图”
误差带图通常由一条折线表示观测值或预测值的变化趋势,而围绕折线的半透明阴影区域则用于展示误差、置信区间或标准差范围,帮助读者同时理解数据本身的趋势和其可信程度。与仅使用折线或误差棒相比,误差带图能够更连续、柔和地表达数据波动,避免因误差线离散而影响整体可读性,也能更直观地体现不同区间数据的不确定性差异。与仅使用折线或误差棒相比,误差带图能够更连续、柔和地表达数据波动,避免因误差线离散而影响整体可读性,也能更直观地体现不同区间数据的不确定性差异。然后根据个人喜好,修改点的形状,颜色,大小;
2025-12-17 10:11:31
1009
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅