核心数学知识点
- 1、引言
- 2、数据科学必会数学知识
- 2.13 K均值聚类
- 2.14 决策树
- 2.15 随机森林
- 2.16 梯度下降
- 2.17 随机梯度下降(SGD)
- 2.18 卷积
- 2.19 拉普拉斯变换
- 2.20 傅里叶变换
- 2.21 信息论
- 2.22 时间序列分析
- 2.23 生成模型与判别模型
- 2.24 支持向量机(SVM)
- 2.25 均方误差(MSE)
- 2.26 L2 正则化
- 3、总结
1、引言
小屌丝:鱼哥,数学知识点下一部分呢。
小鱼:别着急,别着急,这就来了。
小屌丝:一点都不自觉,还得我提醒呢。
小鱼:…
2、数据科学必会数学知识
2.13 K均值聚类
- 定义:一种分组数据的方法,将数据点划分为K个簇。
- 核心原理:欧氏距离、质心更新。
- 用法:数据挖掘、图像分割。
- 算法公式:质心更新
- 代码示例:
2.14 决策树
- 定义:一种递归分割数据的树形模型,用于分类和回归。
- 核心原理:信息增益、基尼系数、剪枝。
- 用法:分类、回归、特征选择。
- 算法公式:信息增益
- 代码示例:
2.15 随机森林
- 定义:通过合并多个决策树模型提高预测准确性的技术。
- 核心原理:集成学习、Bagging、随机子空间。
- 用法:分类、回归、特征重要度评估。
- 算法公式:树的预测加权平均
- 代码示例:
2.16 梯度下降
- 定义:一种优化算法,用于最小化成本函数。
- 核心原理:损失函数、梯度计算、学习率。
- 用法:模型参数优化、神经网络训练。
- 算法公式:
- 代码示例:
2.17 随机梯度下降(SGD)
- 定义:一种基于梯度下降的优化算法,但每次迭代只使用一个样本。
- 核心原理:随机扰动、收敛性、学习率。
- 用法:大规模数据集的优化。
- 算法公式:
- 代码示例:
2.18 卷积
- 定义:一种运算,用于信号、图像、数据特征提取。
- 核心原理:滤波、滑动窗口、卷积核。
- 用法:卷积神经网络(CNN)、图像处理。
- 算法公式:
- 代码示例:
2.19 拉普拉斯变换
- 定义:用于把微分方程转化为代数方程的一种积分变换。
- 核心原理:函数变换、线性运算。
- 用法:信号处理、控制系统。
- 算法公式:
- 代码示例:
2.20 傅里叶变换
- 定义:将时间域信号转换到频域的一种变换技术。
- 核心原理:频谱分析、滤波。
- 用法:信号处理、图像处理。
- 算法公式:
- 代码示例:
2.21 信息论
- 定义:研究信息的度量、传递和压缩的理论。
- 核心原理:熵、互信息、编码定理。
- 用法:数据压缩、特征选择。
- 算法公式:熵
- 代码示例:
2.22 时间序列分析
- 定义:分析时间序列数据的统计方法。
- 核心原理:自相关、移动平均、ARIMA模型。
- 用法:经济预测、库存控制。
- 算法公式: ARIMA模型
- 代码示例:
2.23 生成模型与判别模型
- 定义:生成模型尝试建模输入数据及其标签的联合概率分布,而判别模型则直接建模标签条件概率。
- 核心原理:生成模型(如高斯混合模型)、判别模型(如逻辑回归)。
- 用法:分类、聚类。
- 算法公式:
- 生成模型 ;
- 判别模型
- 代码示例:
2.24 支持向量机(SVM)
- 定义:一种监督学习模型,用于分类和回归。
- 核心原理:最大间隔分类、核函数。
- 用法:分类、回归、异常检测。
- 算法公式: 决策边界
- 代码示例:
2.25 均方误差(MSE)
- 定义:一种衡量预测值与实际值之间差异的度量方法。
- 核心原理:最小化均方误差,找到最优的模型参数。
- 用法:回归模型的损失函数。
- 算法公式:
- 代码示例:
2.26 L2 正则化
- 定义:通过在损失函数中增加所有参数的平方和来惩罚大幅度的权重,旨在防止模型过拟合。
- 核心原理:通过惩罚较大的权重系数来减少模型的复杂度。
- 用法:线性回归、逻辑回归、神经网络。
- 算法公式:
- 代码示例:
3、总结
要想学好数学科学、或者机器学习,数学知识是必会的,也是基础。
所以,以上的这26个数学知识点,一定要掌握。
为了方便我们学习, 我把两篇的链接都放到下面了,点击即可跳转。
- 《【机器学习】必会数学知识:一文掌握数据科学核心数学知识点(上),收藏~》
- 《【机器学习】必会数学知识:一文掌握数据科学核心数学知识点(下),收藏~》
我是小鱼:
- 博客专家;
- 阿里云 专家博主;
- 51CTO博客专家;
- 企业认证金牌面试官;
- 多个名企认证&特邀讲师等;
- 名企签约职场面试培训、职场规划师;
- 多个国内主流技术社区的认证专家博主;
- 多款主流产品(阿里云等)评测一等奖获得者;
关注小鱼,学习【机器学习】&【深度学习】领域的知识。