核心数学知识点
  • 1、引言
  • 2、数据科学必会数学知识
  • 2.13 K均值聚类
  • 2.14 决策树
  • 2.15 随机森林
  • 2.16 梯度下降
  • 2.17 随机梯度下降(SGD)
  • 2.18 卷积
  • 2.19 拉普拉斯变换
  • 2.20 傅里叶变换
  • 2.21 信息论
  • 2.22 时间序列分析
  • 2.23 生成模型与判别模型
  • 2.24 支持向量机(SVM)
  • 2.25 均方误差(MSE)
  • 2.26 L2 正则化
  • 3、总结


1、引言

小屌丝:鱼哥,数学知识点下一部分呢。

小鱼:别着急,别着急,这就来了。

小屌丝:一点都不自觉,还得我提醒呢。

小鱼:…

【机器学习】必会数学知识:一文掌握数据科学核心数学知识点(下),收藏~_决策树

2、数据科学必会数学知识

2.13 K均值聚类

  • 定义:一种分组数据的方法,将数据点划分为K个簇。
  • 核心原理:欧氏距离、质心更新。
  • 用法:数据挖掘、图像分割。
  • 算法公式:质心更新 【机器学习】必会数学知识:一文掌握数据科学核心数学知识点(下),收藏~_决策树_02
  • 代码示例
from sklearn.cluster import KMeans

X = [[1, 2], [1, 4], [1, 0], [10, 2], [10, 4], [10, 0]]
kmeans = KMeans(n_clusters=2, random_state=0).fit(X)
  • 1.
  • 2.
  • 3.
  • 4.

2.14 决策树

  • 定义:一种递归分割数据的树形模型,用于分类和回归。
  • 核心原理:信息增益、基尼系数、剪枝。
  • 用法:分类、回归、特征选择。
  • 算法公式:信息增益 【机器学习】必会数学知识:一文掌握数据科学核心数学知识点(下),收藏~_机器学习_03
  • 代码示例
from sklearn.tree import DecisionTreeClassifier
X = [[0, 0], [1, 1]]
y = [0, 1]
tree = DecisionTreeClassifier().fit(X, y)
  • 1.
  • 2.
  • 3.
  • 4.

2.15 随机森林

  • 定义:通过合并多个决策树模型提高预测准确性的技术。
  • 核心原理:集成学习、Bagging、随机子空间。
  • 用法:分类、回归、特征重要度评估。
  • 算法公式:树的预测加权平均 【机器学习】必会数学知识:一文掌握数据科学核心数学知识点(下),收藏~_机器学习_04
  • 代码示例
from sklearn.ensemble import RandomForestClassifier

X = [[0, 0], [1, 1]]
y = [0, 1]
rf = RandomForestClassifier(n_estimators=10).fit(X, y)
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.

2.16 梯度下降

  • 定义:一种优化算法,用于最小化成本函数。
  • 核心原理:损失函数、梯度计算、学习率。
  • 用法:模型参数优化、神经网络训练。
  • 算法公式【机器学习】必会数学知识:一文掌握数据科学核心数学知识点(下),收藏~_代码示例_05
  • 代码示例
import numpy as np

def gradient_descent(x, y, theta, alpha, iterations):
    m = len(y)
    for _ in range(iterations):
        gradient = np.dot(x.T, (np.dot(x, theta) - y)) / m
        theta -= alpha * gradient
    return theta
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.

2.17 随机梯度下降(SGD)

  • 定义:一种基于梯度下降的优化算法,但每次迭代只使用一个样本。
  • 核心原理:随机扰动、收敛性、学习率。
  • 用法:大规模数据集的优化。
  • 算法公式【机器学习】必会数学知识:一文掌握数据科学核心数学知识点(下),收藏~_数学知识_06
  • 代码示例
from sklearn.linear_model import SGDClassifier

X = [[0, 0], [1, 1]]
y = [0, 1]
sgd = SGDClassifier().fit(X, y)
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.

2.18 卷积

  • 定义:一种运算,用于信号、图像、数据特征提取。
  • 核心原理:滤波、滑动窗口、卷积核。
  • 用法:卷积神经网络(CNN)、图像处理。
  • 算法公式【机器学习】必会数学知识:一文掌握数据科学核心数学知识点(下),收藏~_数学知识_07
  • 代码示例
import numpy as np
from scipy.signal import convolve2d

image = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
kernel = np.array([[1, 0], [0, -1]])
result = convolve2d(image, kernel, mode='valid')
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.

2.19 拉普拉斯变换

  • 定义:用于把微分方程转化为代数方程的一种积分变换。
  • 核心原理:函数变换、线性运算。
  • 用法:信号处理、控制系统。
  • 算法公式【机器学习】必会数学知识:一文掌握数据科学核心数学知识点(下),收藏~_人工智能_08
  • 代码示例
from sympy.integrals.transforms import laplace_transform
from sympy import symbols, exp

t, s = symbols('t s')
f = exp(-t)
F = laplace_transform(f, t, s)
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.

2.20 傅里叶变换

  • 定义:将时间域信号转换到频域的一种变换技术。
  • 核心原理:频谱分析、滤波。
  • 用法:信号处理、图像处理。
  • 算法公式【机器学习】必会数学知识:一文掌握数据科学核心数学知识点(下),收藏~_人工智能_09
  • 代码示例
import numpy as np

x = np.linspace(0, 2 * np.pi, 10)
y = np.sin(x)
y_fft = np.fft.fft(y)
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.

2.21 信息论

  • 定义:研究信息的度量、传递和压缩的理论。
  • 核心原理:熵、互信息、编码定理。
  • 用法:数据压缩、特征选择。
  • 算法公式:熵 【机器学习】必会数学知识:一文掌握数据科学核心数学知识点(下),收藏~_机器学习_10
  • 代码示例
from sklearn.feature_selection import mutual_info_classif

X = [[1, 2], [3, 4], [5, 6]]
y = [0, 1, 0]
mi = mutual_info_classif(X, y)
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.

2.22 时间序列分析

  • 定义:分析时间序列数据的统计方法。
  • 核心原理:自相关、移动平均、ARIMA模型。
  • 用法:经济预测、库存控制。
  • 算法公式: ARIMA模型 【机器学习】必会数学知识:一文掌握数据科学核心数学知识点(下),收藏~_人工智能_11
  • 代码示例
import pandas as pd
from statsmodels.tsa.arima.model import ARIMA

data = pd.Series([1, 2, 3, 4, 5, 6])
model = ARIMA(data, order=(1, 1, 1))
model_fit = model.fit()
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.

2.23 生成模型与判别模型

  • 定义:生成模型尝试建模输入数据及其标签的联合概率分布,而判别模型则直接建模标签条件概率。
  • 核心原理:生成模型(如高斯混合模型)、判别模型(如逻辑回归)。
  • 用法:分类、聚类。
  • 算法公式
  • 生成模型 【机器学习】必会数学知识:一文掌握数据科学核心数学知识点(下),收藏~_数学知识_12
  • 判别模型 【机器学习】必会数学知识:一文掌握数据科学核心数学知识点(下),收藏~_代码示例_13
  • 代码示例
from sklearn.mixture import GaussianMixture
'''
生成模型 - 高斯混合模型 
'''
X = [[1, 2], [3, 4], [5, 6]]
gmm = GaussianMixture(n_components=2).fit(X)
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.

2.24 支持向量机(SVM)

  • 定义:一种监督学习模型,用于分类和回归。
  • 核心原理:最大间隔分类、核函数。
  • 用法:分类、回归、异常检测。
  • 算法公式: 决策边界 【机器学习】必会数学知识:一文掌握数据科学核心数学知识点(下),收藏~_决策树_14
  • 代码示例
from sklearn.svm import SVC

X = [[0, 0], [1, 1]]
y = [0, 1]
clf = SVC().fit(X, y)
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.

2.25 均方误差(MSE)

  • 定义:一种衡量预测值与实际值之间差异的度量方法。
  • 核心原理:最小化均方误差,找到最优的模型参数。
  • 用法:回归模型的损失函数。
  • 算法公式【机器学习】必会数学知识:一文掌握数据科学核心数学知识点(下),收藏~_决策树_15
  • 代码示例
import numpy as np

# 示例数据
y_true = np.array([3.0, -0.5, 2.0, 7.0])
y_pred = np.array([2.5, 0.0, 2.0, 8.0])

# 计算MSE
mse = np.mean((y_true - y_pred)**2)
print("MSE:", mse)
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.

2.26 L2 正则化

  • 定义:通过在损失函数中增加所有参数的平方和来惩罚大幅度的权重,旨在防止模型过拟合。
  • 核心原理:通过惩罚较大的权重系数来减少模型的复杂度。
  • 用法:线性回归、逻辑回归、神经网络。
  • 算法公式【机器学习】必会数学知识:一文掌握数据科学核心数学知识点(下),收藏~_人工智能_16
  • 代码示例
from sklearn.linear_model import Ridge
import numpy as np

# 示例数据
X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]])
y = np.dot(X, np.array([1, 2])) + 3

# 创建Ridge回归模型
ridge = Ridge(alpha=1.0)
ridge.fit(X, y)

# 预测
y_pred = ridge.predict(X)

# 计算MSE
mse_ridge = np.mean((y - y_pred)**2)
print("MSE with L2 regularization:", mse_ridge)
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.

3、总结

要想学好数学科学、或者机器学习,数学知识是必会的,也是基础。
所以,以上的这26个数学知识点,一定要掌握。
为了方便我们学习, 我把两篇的链接都放到下面了,点击即可跳转。

  • 【机器学习】必会数学知识:一文掌握数据科学核心数学知识点(上),收藏~
  • 【机器学习】必会数学知识:一文掌握数据科学核心数学知识点(下),收藏~

我是小鱼

  • 博客专家
  • 阿里云 专家博主
  • 51CTO博客专家
  • 企业认证金牌面试官
  • 多个名企认证&特邀讲师等
  • 名企签约职场面试培训、职场规划师
  • 多个国内主流技术社区的认证专家博主
  • 多款主流产品(阿里云等)评测一等奖获得者

关注小鱼,学习【机器学习】&【深度学习】领域的知识。