java 8 在推出stream 之后 对于集合等数据的处理用了就回不去了,在此处做个笔记。
查数据
List<Map<String, Object>> prnInfo = xxxMapper.selectInfo(pars);
List<String> ids= prnInfo.stream().map(m -> m.get("id").toString()).collect(Collectors.toList());
**1.根据map的某个key分组**
Map<String, List<Map<String, Object>>> res= dataList.stream().collect(
groupingBy(map -> map.get("d").toString()));
获取type="ZC"的数据
----------------------------------------------------------------
List<Map<String, Object>> data = res.stream().
filter(
map -> (map.get("type")+"").equals("ZC")
).collect(Collectors.toList());
-----------------------------------------------------------------
List<Map<String, Object>> res = prnInfo .stream().filter(e ->Integer.parseInt(e.get("caseFlag").toString()) != 0).collect(Collectors.toList());
**2.根据某个key求对应value和**
int totalNums= prnInfo .stream().collect(Collectors.summingInt( e -> Integer.parseInt(e.get("num").toString())));
**3.根据map中的某个key的value值进行判断过滤**
List<Map<String,Object>> res= prnInfo .stream().filter(e -> Double.parseDouble(e.get("z").toString())>Double.parseDouble(e.get("wrz").toString()))
.collect(Collectors.toList());
------------------------------------------------------------------------
获取指XX时间前后的数据
LocalDateTime ftm = "xxxxxxxxx";
List<Map<String, Object>> res = prnInfo .stream().
filter(
map -> LocalDateTime.parse(map.get("starttm")+"", DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm")).isBefore(tm )
).collect(Collectors.toList());
------------------------------------------------------------------------
**4.对集合中的map做变更**
List<Map<String, Object>> res= prnInfo .stream().map(x -> {
x.put("encd", Double.parseDouble(x.get("rz")+"")-Double.parseDouble(x.get("tdz")+""));
return x;
}).collect(Collectors.toList());
**5.排序**
List<Map<String, Object>> res= prnInfo.stream().sorted((e1,e2) -> {
return -Double.compare(Double.valueOf(e1.get("num").toString()),Double.valueOf(e2.get("num").toString()));
}).collect(Collectors.toList());
res.sort(Comparator.comparing((Map<String, Object> h) -> (h.get("tm").toString())));
//排序可能对应字段数据为null导致空指针,需要先判断过滤一下
res.stream().filter(Objects::nonNull).filter((Map<String, Object> h)
-> (Objects.nonNull(h.get("fz")))).collect(Collectors.toList());
6.去重
List<String> res = prnInfo.stream().distinct().collect(Collectors.toList());
7.做统计
IntSummaryStatistics collect = list.stream().collect(Collectors.summarizingInt(Test::getId));
System.out.println("和:" + collect.getSum());
System.out.println("数量:" + collect.getCount());
System.out.println("最大值:" + collect.getMax());
System.out.println("最小值:" + collect.getMin());
System.out.println("平均值:" + collect.getAverage());
最大
double max = prnInfo.stream().mapToDouble(l -> ((BigDecimal) l.get("num")).doubleValue()).max().getAsDouble();
和
double sum = prnInfo.stream().mapToDouble(l -> ((BigDecimal) l.get("num")).doubleValue()).sum();
8.list-map转换
Map<String, Object> map = list.stream()
.collect(Collectors.toMap(i -> i.getName() + i.getUnitName(), j -> j, (k1, k2) -> k1));
------------------------------------------------------------------------
List<User> collect = map.entrySet().stream().map(item -> {
User user= new User();
user.setId(item.getKey());
user.setName(item.getValue());
return user;
}).collect(Collectors.toList());
遍历。。
users.stream().forEach(x->{
System.out.println(x);
});
下面这个场景用的也很多,List里面的a和b相等就把c属性相加,报表里面某些属性相等则求和等场景,可以先根据需要去重的多个字段进行分组,再计算返回
for (Map.Entry<String, List<DTO>> entry : beanList.parallelStream().collect(groupingBy(o -> (o.getId() + o.geCode()), Collectors.toList())).entrySet()) {
if(bitMap.contains(entry.getKey()) && entry.getValue().size()==1){
objects.add(entry.getValue().get(0));
}else{
List<DTO> transfer = entry.getValue();
transfer.stream().reduce((a, b) -> DTO.builder()
.irrCd(a.getIrrCd())
.id(a.getId())
.tm(a.getCode())
.build())
.ifPresent(objects::add);
}
}