Agentic AI即代理式人工智能,也称为智能体AI、代理式AI、能动AI或自主AI(Autonomous AI),是人工智能领域的新兴概念。它是指被设计用来通过理解目标、导航复杂环境,并在最少的人工干预下执行任务的系统,能够通过自然语言输入独立和主动地完成端到端任务。以下从不同角度详细介绍:
- 核心特征:
- 自主性:与传统人工智能系统不同,Agentic AI旨在主动采取行动,独立执行定向任务,无需持续的人类监督,能够在没有人类干预的情况下完成任务。
- 推理能力:拥有高级的决策能力,可做出情境判断、权衡利弊并制定战略行动。
- 适应性规划:在动态多变的条件下,能根据当时的情况表现出灵活性和响应能力,调整其目标和计划。
- 语言理解:具有先进的理解和解释自然语言的能力,可以一丝不苟地遵循复杂的指令,增强处理复杂操作的能力。
- 工作流程优化:能在子任务和应用程序之间流畅地移动,以最佳效率执行流程,同时确保实现最终目标。
- 与其他AI的区别:AI智能体是模型能够和一些外部系统提供的功能相结合,真正执行一些任务;聊天机器人需要人类输入提示才能做出回应;传统人工智能系统通常旨在增强或自动化预定的重复性任务,缺乏处理更高级、更复杂任务所需的整体理解和判断。而Agentic AI聚焦独立自主行动以及处理复杂任务和环境的更广泛功能,是AI智能体发展的下一阶段,可以自己行动,能够通过设计工作流和使用工具,代表用户或其他系统自主执行任务。
- 业界观点:
- OpenAI:在《Practices for Governing Agentic AI Systems》白皮书中,认为智能体人工智能系统的特征是能够采取行动,这些行动在很长一段时间内持续地有助于实现目标,而不必事先明确规定其行为。白皮书还将系统的智能性(Agenticness,还可翻译为主动性、代理性、能动性)程度定义为系统在有限的直接监督下适应性地实现复杂环境中的复杂目标的程度,并将这种智能性细分为目标复杂性、环境复杂性、适应性和独立执行四个组成部分。
- artificiality:将Agentic AI Systems定义为能够以不同复杂性感知、推理和行动的系统,以将人类思维扩展到当前经验之外,该定义更加强调了感知、推理和行动这三种能力。
- IBM:认为Agentic AI系统具有“代理”功能,可做出决策、采取行动、解决复杂问题,并在训练机器学习模型的数据之外与外部环境进行交互,它将大模型的通用性和灵活性与传统编程的精确性结合在一起。
借助火山引擎使用Doubao-1.5-pro-32k 大模型