- 博客(2)
- 收藏
- 关注
转载 探秘Transformer系列之(20)--- KV Cache
随着输入给LLM的token列表增长,Transformer的自注意力阶段可能成为性能瓶颈。token列表越长,意味着相乘的矩阵越大。每次矩阵乘法都由许多较小的数值运算组成,这些运算称为浮点运算,其性能受限于GPU的每秒浮点运算能力(FLOPS)。这样,在LLM的部署过程中,推理延迟和吞吐量问题成为了亟待解决的难题。生成推理的序列自回归特性,需要为所有先前的标记重新计算键和值向量。由于注意力机制与输入序列的大小呈二次方关系增长,因此在推理过程中,注意力机制往往会产生最大的延迟开销。
2025-05-09 15:25:45
37
转载 jquery获取iframe中的内容跨域问题
解决方案相关学习资料:https://edu.51cto.com/video/2306.htmljQuery获取iframe中的内容跨域问题及解决方案在Web开发中,我们经常会遇到需要从iframe中获取内容的情况。但是,由于浏览器的同源策略限制,跨域访问iframe中的内容往往会遇到一些问题。本文将介绍如何使用jQu...
2024-07-28 02:29:52
223
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人