创建Node节点
public class Node {
int value;
Node left;
Node right;
public Node(int value) {
this.value = value;
}
//查找要删除的节点
/**
* @param value 希望删除的节点
* @return 如果找到返回该节点,否则返回null
*/
public Node search(int value) {
if (value == this.value) {//找到就是该节点
return this;
} else if (value < this.value) {//如果查找的值小于当前节点,向左子树递归查找
//如果左子节点为空
if (this.left == null) {
return null;
}
return this.left.search(value);
} else {//如果查找的值不小于当前节点,向右子树递归查找
if (this.right == null) {
return null;
}
return this.right.search(value);
}
}
//查找要删除节点的父节点
/**
* @param value 要找到的节点值
* @return 返回的是要删除节点的父节点,如果没有就返回null
*/
public Node searchParent(int value) {
//如果当前节点就是要删除的节点的父节点,就返回
if ((this.left != null && this.left.value == value) || (this.right != null && this.right.value == value)) {
return this;
} else {
//如果查找的值小于当前节点的值,并且当前节点的左子节点不为空
if (value < this.value && this.left != null) {
return this.left.searchParent(value);//向左子树递归查找
} else if (value >= this.value && this.right != null) {
return this.right.searchParent(value);
} else {
return null;//没有找到父节点
}
}
}
@Override
public String toString() {
return "Node{" +
"value=" + value +
'}';
}
//添加节点方法
//递归的形式添加节点,注意需要满足二叉树排序树的要求
public void add(Node node) {
if (node == null) {
return;
}
//判断传入的节点的值,和当前子树的根节点的关系
if (node.value < this.value) {
//如果当前及诶单左子节点为null
if (this.left == null) {
this.left = node;
} else {
//递归的向左子树添加
this.left.add(node);
}
} else {//添加的节点的值大于当前节点的值
if (this.right == null) {
this.right = node;
} else {
//递归的向右子树添加
this.right.add(node);
}
}
}
//中序遍历
public void infixOrder() {
if (this.left != null) {
this.left.infixOrder();
}
System.out.println(this);
if (this.right != null) {
this.right.infixOrder();
}
}
}
创建二叉排序树
public class BinarySortTree {
private Node root;
//查找要删除的节点
public Node search(int value) {
if (root == null) {
return null;
} else {
return root.search(value);
}
}
//查找父节点
public Node searchParent(int value) {
if (root == null) {
return null;
} else {
return root.searchParent(value);
}
}
//编写方法
//1、返回以 node 为根节点的二叉排序树的最小节点的值
//2、删除node 为根节点的二叉树排序树的最小节点
/**
* @param node 传入的节点(当做二叉排序树的根节点)
* @return 返回以node 为根节点的二叉树排序树的最小节点的值
*/
public int delRightTreeMin(Node node) {
Node target = node;
//循环的查找左节点,就会找到最小值
while (target.left != null) {
target = target.left;
}
//这时,target 指向了最小节点
//删除最小节点
delNode(target.value);
return target.value;
}
//删除节点
public void delNode(int value) {
if (root == null) {
return;
} else {
//1、需求先去找到要删除的节点,targetNode
Node targetNode = search(value);
//如果没有找到要删除的节点
if (targetNode == null) {
return;
}
//如果我们发现当前这颗二叉树排序树只有一个节点
if (root.left == null && root.right == null) {
root = null;
return;
}
//找到targetNode的父节点
Node parent = searchParent(value);
//如果要删除的节点是叶子节点
if (targetNode.left == null && targetNode.right == null) {
//判断targetNode 是父节点的左子节点,还是右子节点
if (parent.left != null && parent.left.value == value) {//左子节点
parent.left = null;
} else if (parent.right != null && parent.right.value == value) {//右子节点
parent.right = null;
}
} else if (targetNode.left != null && targetNode.right != null) {//
int minVal = delRightTreeMin(targetNode.right);
targetNode.value = minVal;
} else {//删除只有一颗子树的节点
//如果要删除的节点有左子节点
if (targetNode.left != null) {
if (parent != null) {
//如果targetNode 是 parent的左子节点
if (parent.left.value == value) {
parent.left = targetNode.left;
} else {//是 targetNode 是parent的右子节点
parent.right = targetNode.left;
}
} else {
root = targetNode.left;
}
} else {//如果要删除的节点有右子节点
if (parent != null) {
if (parent.left.value == value) {
parent.left = targetNode.right;
} else {
//如果targetNode 是 parent的右子节点
parent.right = targetNode.right;
}
} else {
root = targetNode.right;
}
}
}
}
}
//添加节点的方法
public void add(Node node) {
if (root == null) {
root = node;//如果root为空则直接让root指向node
} else {
root.add(node);
}
}
//中序遍历
public void infixOrder() {
if (root != null) {
root.infixOrder();
} else {
System.out.println("二叉树不能为空");
}
}
}
main方法测试:
public static void main(String[] args) {
int[] arr = {7, 3, 10, 12, 5, 1, 9, 2};
BinarySortTree binarySortTree = new BinarySortTree();
//循环的添加节点到二叉排序树
for (int i = 0; i < arr.length; i++) {
binarySortTree.add(new Node(arr[i]));
}
//中序遍历二叉排序树
binarySortTree.infixOrder();
//删除叶子节点
binarySortTree.delNode(10);
System.out.println("删除节点后");
binarySortTree.infixOrder();
}