Java之二叉树删除节点操作

创建Node节点

public class Node {
    int value;
    Node left;
    Node right;

    public Node(int value) {
        this.value = value;
    }

    //查找要删除的节点

    /**
     * @param value 希望删除的节点
     * @return 如果找到返回该节点,否则返回null
     */
    public Node search(int value) {
        if (value == this.value) {//找到就是该节点
            return this;
        } else if (value < this.value) {//如果查找的值小于当前节点,向左子树递归查找
            //如果左子节点为空
            if (this.left == null) {
                return null;
            }
            return this.left.search(value);

        } else {//如果查找的值不小于当前节点,向右子树递归查找
            if (this.right == null) {
                return null;
            }
            return this.right.search(value);
        }
    }

    //查找要删除节点的父节点

    /**
     * @param value 要找到的节点值
     * @return 返回的是要删除节点的父节点,如果没有就返回null
     */
    public Node searchParent(int value) {
        //如果当前节点就是要删除的节点的父节点,就返回
        if ((this.left != null && this.left.value == value) || (this.right != null && this.right.value == value)) {
            return this;
        } else {
            //如果查找的值小于当前节点的值,并且当前节点的左子节点不为空
            if (value < this.value && this.left != null) {
                return this.left.searchParent(value);//向左子树递归查找
            } else if (value >= this.value && this.right != null) {
                return this.right.searchParent(value);
            } else {
                return null;//没有找到父节点
            }
        }
    }

    @Override
    public String toString() {
        return "Node{" +
                "value=" + value +
                '}';
    }

    //添加节点方法
    //递归的形式添加节点,注意需要满足二叉树排序树的要求
    public void add(Node node) {
        if (node == null) {
            return;
        }
        //判断传入的节点的值,和当前子树的根节点的关系
        if (node.value < this.value) {
            //如果当前及诶单左子节点为null
            if (this.left == null) {
                this.left = node;
            } else {
                //递归的向左子树添加
                this.left.add(node);
            }
        } else {//添加的节点的值大于当前节点的值
            if (this.right == null) {
                this.right = node;
            } else {
                //递归的向右子树添加
                this.right.add(node);
            }
        }
    }

    //中序遍历
    public void infixOrder() {
        if (this.left != null) {
            this.left.infixOrder();
        }
        System.out.println(this);
        if (this.right != null) {
            this.right.infixOrder();
        }
    }
}

创建二叉排序树

public class BinarySortTree {
    private Node root;

    //查找要删除的节点
    public Node search(int value) {
        if (root == null) {
            return null;
        } else {
            return root.search(value);
        }
    }

    //查找父节点
    public Node searchParent(int value) {
        if (root == null) {
            return null;
        } else {
            return root.searchParent(value);
        }
    }

    //编写方法
    //1、返回以 node 为根节点的二叉排序树的最小节点的值
    //2、删除node 为根节点的二叉树排序树的最小节点

    /**
     * @param node 传入的节点(当做二叉排序树的根节点)
     * @return 返回以node 为根节点的二叉树排序树的最小节点的值
     */
    public int delRightTreeMin(Node node) {
        Node target = node;
        //循环的查找左节点,就会找到最小值
        while (target.left != null) {
            target = target.left;
        }
        //这时,target 指向了最小节点
        //删除最小节点
        delNode(target.value);
        return target.value;
    }

    //删除节点
    public void delNode(int value) {
        if (root == null) {
            return;
        } else {
            //1、需求先去找到要删除的节点,targetNode
            Node targetNode = search(value);
            //如果没有找到要删除的节点
            if (targetNode == null) {
                return;
            }
            //如果我们发现当前这颗二叉树排序树只有一个节点
            if (root.left == null && root.right == null) {
                root = null;
                return;
            }
            //找到targetNode的父节点
            Node parent = searchParent(value);
            //如果要删除的节点是叶子节点
            if (targetNode.left == null && targetNode.right == null) {
                //判断targetNode 是父节点的左子节点,还是右子节点
                if (parent.left != null && parent.left.value == value) {//左子节点
                    parent.left = null;
                } else if (parent.right != null && parent.right.value == value) {//右子节点
                    parent.right = null;
                }
            } else if (targetNode.left != null && targetNode.right != null) {//
                int minVal = delRightTreeMin(targetNode.right);
                targetNode.value = minVal;
            } else {//删除只有一颗子树的节点
                //如果要删除的节点有左子节点
                if (targetNode.left != null) {
                    if (parent != null) {
                        //如果targetNode 是 parent的左子节点
                        if (parent.left.value == value) {
                            parent.left = targetNode.left;
                        } else {//是 targetNode 是parent的右子节点
                            parent.right = targetNode.left;
                        }
                    } else {
                        root = targetNode.left;
                    }
                } else {//如果要删除的节点有右子节点
                    if (parent != null) {
                        if (parent.left.value == value) {
                            parent.left = targetNode.right;
                        } else {
                            //如果targetNode 是 parent的右子节点
                            parent.right = targetNode.right;
                        }
                    } else {
                        root = targetNode.right;
                    }
                }
            }
        }

    }

    //添加节点的方法
    public void add(Node node) {
        if (root == null) {
            root = node;//如果root为空则直接让root指向node
        } else {
            root.add(node);
        }
    }

    //中序遍历
    public void infixOrder() {
        if (root != null) {
            root.infixOrder();
        } else {
            System.out.println("二叉树不能为空");
        }
    }
}

main方法测试:

 public static void main(String[] args) {
        int[] arr = {7, 3, 10, 12, 5, 1, 9, 2};
        BinarySortTree binarySortTree = new BinarySortTree();
        //循环的添加节点到二叉排序树
        for (int i = 0; i < arr.length; i++) {
            binarySortTree.add(new Node(arr[i]));
        }
        //中序遍历二叉排序树
        binarySortTree.infixOrder();
        //删除叶子节点
        binarySortTree.delNode(10);
        System.out.println("删除节点后");
        binarySortTree.infixOrder();
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值