反常积分中的瑕点指的是被积函数
f
(
x
)
f(x)
f(x)趋于无穷的点。在反常积分的判敛中,区间只能有一个瑕点(∞也算一个瑕点)。所以,对于一个区间有两个瑕点的情况,要把区间拆开。例如在下题中: 分母不能为0,所以
x
=
0
x=0
x=0是瑕点; 分子
l
n
(
1
−
x
)
ln(1-x)
ln(1−x),所以
x
=
1
x=1
x=1也是瑕点。 然后拆成
∫
0
a
\int_0^a
∫0a 和
∫
a
1
\int_a^1
∫a1 两个积分区间进行分析。其中
a
a
a取(0, 1)