论文笔记
_Xiaobo
保持移动
展开
-
2014 CVPR-DeepReID Deep Filter Pairing Neural Network for Person Re-Identification
论文地址 - 第一篇用深度学习来做Re-ID的工作,介绍了很多基础性的概念 - model部分对CNN的设计思路讲的很详细,有些细节还没有完全搞懂,回头会继续理解总结~Motivation传统的re-ID的流程如下图: 现在的re-ID工作要么是分开优化流程中的几个模块,要么是顺序优化,这种做法如果有用的信息在之前的步骤中丢失就难以在恢复了,影响整个系统的性能。...原创 2018-05-02 10:59:46 · 2552 阅读 · 2 评论 -
2018-ECCV-Mancs-A Multi-task Attentional Network with Curriculum Sampling
论文地址Motivation现有的Re-ID工作都面临以下的问题:loss function的选择不对准问题寻找高判别力的局部特征对于rank loss优化中的采样问题目前的大多数工作都是针对上述问题中的一两个来进行解决,能不能用一个统一的框架来解决上述问题呢?Contribution1 IntroductionRe-ID定义、意义以及难点研究方向:...原创 2018-10-12 11:35:08 · 1887 阅读 · 4 评论 -
2018-CVPR-Harmonious Attention Network for Person Re-Identification
论文地址代码实现【Pytorch】Motivation对于大幅度的姿势变化以及错检带来的行人框对准问题,现有方法采用constrained attention selection mechanisms解决并不是最优的,如何更好的优化该问题呢?Contribution提出了新的联合学习多尺度注意力徐州与特征表示方法Harmonious Attention Moudlehard ...原创 2018-09-24 10:46:29 · 3020 阅读 · 2 评论 -
2018-CVPR-Efficient and Deep Person Re-Identification using Multi-Level Similarity
论文地址Motivation目前的方法只考虑在某一个特征的卷积层输出来计算相似性,是否可以使用多尺度提高相似度的计算的准确性呢?许多工作假定相关视觉特征不会平移太大的距离,没有在整张图上考虑相关性,很容易丢失信息之前都是在特征图的rigid part来计算product或者difference,没有对于尺度、旋转的不变性Contribution提出了全卷积Siam...原创 2018-07-23 00:02:32 · 1254 阅读 · 3 评论 -
2018 ECCV-Beyond Part Models:Person Retrieval with Refined Part Pooling
论文地址代码实现:PytorchMotivation基于part-level特征的re-id方法现在性能不错,但是利用了额外的线索(pose estimation等),同时因为domain的差异性,产生part的模型精度相对不高容易引入噪声影响(比较区域的内容不一致性)最终re-id的性能。==> 是否一定需要额外的线索? 如何更精准定位?Contributio...原创 2018-07-15 16:52:31 · 1077 阅读 · 0 评论 -
2018 CVPR-Attention-Aware Compositional Network for Person Re-identification
论文地址Motivation已有很多方法利用人体姿态估计对来解决re-id中的姿势变化问题,并在一定程度上提升了re-id性能,但是pose information信息是否被充分利用了呢?在Re-ID场景中有大量的遮挡问题,有什么好的办法区分肢体对人的遮挡(weak feature)以及包裹等对人的遮挡(强特征)呢?Contribution提出了处理re-id中misa...原创 2018-07-08 20:01:29 · 2995 阅读 · 5 评论 -
2018 CVPR-Person Transfer GAN to Bridge Domain Gap for Person Re-Identification
论文地址代码地址:tensorflowMotivation已有很多算法在现有的Re-ID数据集取得了较高的精度,但是相对于实际应用场景差距较大(人与摄像头数量、各种变化)不同数据集之间存在domain gap,在一个数据集上训练模型,在另外一个数据集上进行预测性能下降很大,如何解决这个问题呢?Contribution提出了更加接近真实场景的MSMT17数据集提...原创 2018-06-24 15:47:24 · 3772 阅读 · 3 评论 -
2018 CVPR-Human Semantic Parsing for Person Re-identification
论文地址 Motivation现有方法都是利用检测框来对局部特征进行提取,这样的框框精度较低,有没有更加精准的方法来提取局部细节特征呢?现有的方法涉及很多模块,相对比较复杂,那么这些复杂模块是否有必要呢?有没有简单的方法来达到相同的性能呢?Contribution通过大量实验证明使用简单且有效的训练方法能够显著超过SOTA提出了SPReID,利用human sem...原创 2018-06-18 13:16:11 · 3942 阅读 · 0 评论 -
2017 ICCV-Pose-driven Deep Convolutional Model for Person Re-identification
Motivation巨大的姿势变化以及复杂的视角差异增加了从行人图片中提取特征与匹配的困难Contribution提出了Pose-driven Deep Convolutional(PDC) model来提高特征学习以及匹配pose driven feature weighting sub-network来学习自适应特征融合1.Introductionr...原创 2018-06-10 17:58:07 · 3005 阅读 · 7 评论 -
2017 AAAI-A Multi-task Deep Network for Person Re-identification
论文地址和之前一篇文章比较像,也是考虑用多任务来做Re-ID来学到相对鲁棒的特征(多个损失),本文方法中根据不同loss的特点在不同层使用不同的loss来优化感觉很有意思,简单总结下本文的方法部分Motivationrank loss与binary classification loss各有优缺点对于深度学习方法来说,re-id数据集规模太小,难以在小数据集上训练深度网络...原创 2018-06-03 15:32:52 · 1469 阅读 · 0 评论 -
2016 CVPR-Learning Deep Feature Representations with Domain Guided Dropout for Person Re-ID
论文地址Motivation大规模的数据集是成功应用深度学习的关键,对于很多任务来说,没有大的数据集来学习到通用且鲁棒的特征,同时不同的学者提出了许多小的数据集,能否利用multi-domain learning来利用与同一个任务相关的不同数据集来学习得到更加通用且鲁棒的特征呢?在多领域学习中,因为领域偏差的存在,一个对某个领域有效的神经元可能对其他领域无用,对于一个多领域学习的模型,...原创 2018-05-27 11:32:32 · 984 阅读 · 0 评论 -
2016 Deep Transfer Learning for Person Re-identification
论文地址 一篇关于如何进行迁移学习干货的文章0.0Motivation现有的Re-ID数据集都相对较小,目前大多数方法都只在Re-ID数据集上训练得到模型,对于不同Re-ID数据集的泛化能力很差,如何利用其他大型数据集通过迁移学习得到更泛化的特征呢?现实应用中有大量的未标注的数据,采用无监督学习的方法来利用这些数据对于实际应用有重要的意义。Contributio...原创 2018-05-19 11:46:18 · 1062 阅读 · 5 评论 -
2016 CVPR-Person Re-Identification by Multi-Channel Parts-Based CNN with Improved Triplet Loss
Motivation如今的Re-ID工作大多是将特征学习与度量学习分开,那么能不能把两者一起学习来提高性能呢?同时对整张图像直接提取特征往往不能捕捉图像中人物的细节信息,怎么能设计模型来更好利用局部特征呢?之前的triplet loss仅仅使类内距离小于类间距离就行,这样学习出来的类簇相对较大,能不能学到更紧凑的类簇来提高判别力呢?本文的multi-channel + improved...原创 2018-05-12 11:31:25 · 1769 阅读 · 1 评论 -
2014 ICPR-Deep Metric Learning for Person Re-Identification
论文地址也是最早用深度学习方法做Re-ID的工作对跨数据集模型的泛化性能进行了实验Motivation传统方法通常都是将特征提取与度量学习分开处理的,end-to-end的深度学习在计算视觉各个领域都取得了较大的成功,那么能不能在Re-ID上用一个统一的框架来联合进行特征提取与度量学习呢?Contribution提出了”Deep Metric Learnin...原创 2018-05-05 11:11:03 · 2592 阅读 · 3 评论 -
2017 TOMM-A Discriminatively Learned CNN Embedding for Person Re-identification
论文地址 代码实现:Matconvnet、caffe、kerasMotivation现在主流的两种re-ID卷积网络:verification and identification models,这两种网络因为损失函数的不同各有优缺点那么能不能把这两种网络结合一下来得到一个能学习到更具区分能力的表示呢?Contribution提出了siamese network结...原创 2018-04-26 11:32:31 · 3252 阅读 · 2 评论 -
2016 ECCV-Gated Siamese Convolutional Neural Network Architecture for Human Re-ID
论文地址 第一篇论文笔记,希望大家能多提些意见来帮助我提高论文笔记模型的性能。相关方向的童鞋可以加qq:396543018一起交流~Motivation现在的Siamese CNN对每个照片仅在final level提取固定的表示进行比较,而不管与其配对的其他图像情况。缺点:难以提取对于区分hard negative pairs与positive pairs局部的细致模式对于以...原创 2018-04-25 11:01:56 · 2089 阅读 · 2 评论 -
2015 CVPR-An Improved Deep Learning Architecture for Person Re-Identification
论文地址 代码实现:kerasMotivation继14年两篇用深度学习做re-ID工作之后,进一步对深度学习方法的探索Contribution提出了一个新的网络模型来同时学习特征和对应的相似性度量,两个特点: neighborhood difference layer:比较两个输入图像对中相近区域的经卷积后的相似图像特征patch summary featrues...原创 2018-05-09 15:07:33 · 3240 阅读 · 10 评论 -
2017-CVPR-Spindle Net: Person Re-identification with Human Body Region Guided Feature
论文地址Motivation由检测算法以及姿势变化引起的行人身体不对准问题会为不同图像间的特征匹配造成严重的影响 --> 怎么解决这个问题?Contribution首次在ReID中考虑人体结构信息:帮助对齐不同图像中人体区域特征增强局部细节信息的表示能力SpindleNeta multi-stage ROI pooling framework --> 不同...原创 2018-09-30 15:38:29 · 3391 阅读 · 1 评论