在人工智能领域,为 LLM(大型语言模型)和 Diffusion Model(扩散模型)提供训练稳定性、易用性、性能和 Scale up 的优化是一项至关重要的任务。
目前,一些大厂正在招聘 AI 训练性能优化工程师,专门负责为 LLM 和 Diffusion Model 进行多方面的优化。这些工程师需要能够使用 Profiler 手段,分析训练瓶颈,通过分布式策略调优、算子优化等手段来提升训练性能。他们还负责训练优化技术的调研和引入,并与算法部门深度合作,进行算法与系统的联合优化。
对于 LLM 的优化,一般包括三个方面。首先是微调 LLM 以适用于特定任务,例如选择合适的预训练 LLM 模型,并使用特定任务的数据集对其进行微调,同时尝试不同的微调方法和超参数以获得最佳结果,并使用适当的指标和验证技术评估微调后的 LLM 模型性能。其次是压缩、量化和知识蒸馏 LLM 模型以提高其可扩展性和部署性,比如可以采用修剪、量化和知识蒸馏等技术来减小 LLM 模型的大小而不影响其性能,将 LLM 模型从浮点算术转换为定点算术以减小内存占用并提高推理时间,训练一个较小、更简单的模型来模仿较大、更复杂的模型的行为。最后是优化 LLM 性能的关键策略,包括优化推理时间,可通过修剪未使用的神经元、减少精度和使用高效硬件加速器等技术;使用缓存和记忆化技术,存储先前计算的结果并在可能时重复使用以减少计算量;在准确性和速度之间权衡,根据实际情况牺牲一定程度的准确性以实现更快的推理时间。
对于 Diffusion Model 的优化,有项目将其与强化学习相结合,为 RL 带来新的视角和可能性。例如 OpenDILab 发起的项目,旨在收集、整理和分享关于如何在强化学习中应用扩散模型的前沿研究和实践,它不仅包含丰富的文献资源,