一、GDPR合规的合成数据生成实施方案
1. GDPR核心要求与技术映射
GDPR条款 |
技术要求 |
实现方案 |
数据最小化原则 |
生成数据仅包含必要字段 |
字段级生成控制+特征相关性过滤 |
可识别性消除 |
确保无法通过合成数据反推个体 |
k-匿名性增强+属性泛化 |
用户删除权 |
支持从生成模型中删除特定用户数据 |
联邦学习架构+差分隐私训练 |
数据可移植性 |
生成数据格式标准化 |
JSON Schema验证+FHIR格式输出 |
2. 安全合成数据生成架构
from diffprivlib.models import LogisticRegression
from synthia import Generators
class GDPRCompliantGenerator:
def __init__(self, epsilon=3.0):
self.epsilon = epsilon
self.encoder = self._init_encoder()
self.dp_model = LogisticRegression(epsilon=epsilon)
def _init_encoder(self):
"""联邦特征编码器"""
return Generators.FederatedEncoder(
categorical_embedding_dim=32,
numerical_scaling='quantile'
)
def _apply_differential_privacy(self, data):
"""应用差分隐私机制"""
sensitivity = 1.0
noisy_data = data + np.random.laplace(
scale=sensitivity/self.epsilon,
size=data.shape
)
return noisy_data
def generate(self, real_data, num_samples):
encoded_data = self.encoder.fit_transform(real_data)
self.dp_model.fit(encoded_data, real_data['label'])
synthetic_encoded = self.dp_model.sample(num_samples)
synthetic_data = self.encoder.inverse_transform(synthetic_encoded)
return self._k_anonymize(synthetic_data, k=5)
def _k_anonymize(self, data, k=5):
"""实现k-匿名化"""
from anonympy.pandas import Anonymizer
anonymizer = Anonymizer(data)
return anonymizer.anonymize(
quasi_ident=['age', 'zipcode'],
sensitive='diagnosis',
k=k
)
3. 合规性验证体系
from sdv.evaluation import evaluate
from anonympy.common.utils import k_anonymity
def validate_compliance(real_data, synthetic_data):
linkage_risk = linkage_attack_test(real_data, synthetic_data)
inference_risk = membership_inference_attack(synthetic_data)
quality_report = evaluate(synthetic_data, real_data, metrics=['KSTest', 'CSTest'])
k_anon = k_anonymity(synthetic_data, quasi_ids=['age', 'zipcode'])
return {
'k_anonymity': k_anon,
'linkage_risk': linkage_risk,
'utility_score': quality_report,
'gdpr_compliance': k_anon >= 5 and linkage_risk < 0.1
}
def linkage_attack_test(real, synthetic):
"""链接攻击模拟"""
from sklearn.neighbors import NearestNeighbors
nn = NearestNeighbors(n_neighbors=1).fit(real)
distances, _ = nn.kneighbors(synthetic)
return (distances < 0.05).mean()
4. 合成数据全生命周期管理