化疗药物代谢与毒性评估的生理级精度:多器官芯片与数字孪生技术融合
一、技术框架与核心突破
生理级精度的评估需突破传统体外模型(2D细胞系、动物实验)的局限性,通过多器官芯片系统与数字孪生技术的整合,实现以下核心能力:
- 跨器官代谢动力学模拟:构建肝、肾、肠、心脏等器官的联合芯片模型,模拟药物吸收(肠道)、代谢(肝脏)、排泄(肾脏)的全链条过程,捕捉器官间交互对毒性累积的影响。
import numpy as np
from scipy.integrate import solve_ivp
import matplotlib.pyplot as plt
# 定义器官模型参数
k_absorption = 0.5 # 肠道吸收速率常数
k_metabolism = 0.3 # 肝脏代谢速率常数
k_excretion = 0.2 # 肾脏排泄速率常数
k_heart = 0.1 # 心脏毒性累积速率常数
interaction_factor = 0.05 # 器官间交互因子
# 定义动力学模型
def organ_model(t, y):
intestine, liver, kidney, heart = y
# 肠道吸收
d_intestine = -k_absorption * intestine
# 肝脏代谢
d_liver = k_absorption * intestine - k_metabolism * liver
# 肾脏排泄
d_kidney = k_metabolism * liver - k_excretion * kidney
# 心脏毒性累积(受肝脏和肾脏影响)
d_heart = k_heart * (liver + kidney) - interaction_factor * heart
return [d_intestine, d_liver, d_kidney, d_heart]
# 初始条件
y0 = [100, 0, 0, 0] # 初始药物量在肠道,其他器官为0
t_span = (0, 50) # 模拟时间范围
t_eval = np.linspace(t_span[0], t_span[1], 500) # 时间点
# 求解微分方程
sol = solve_ivp(organ_model, t_span, y0, t_eval=t_eval)
# 绘制结果
plt.plot(sol.t, sol.y[0], label='Intestine')
plt.plot(sol.t, sol.y[1], label='Liver')
plt.plot(sol.t, sol.y[2], label='Kidney')