化疗药物代谢与毒性评估的生理级精度:多器官芯片与数字孪生技术融合

化疗药物代谢与毒性评估的生理级精度:多器官芯片与数字孪生技术融合


一、技术框架与核心突破

生理级精度的评估需突破传统体外模型(2D细胞系、动物实验)的局限性,通过多器官芯片系统数字孪生技术的整合,实现以下核心能力:

  1. 跨器官代谢动力学模拟:构建肝、肾、肠、心脏等器官的联合芯片模型,模拟药物吸收(肠道)、代谢(肝脏)、排泄(肾脏)的全链条过程,捕捉器官间交互对毒性累积的影响。
import numpy as np
from scipy.integrate import solve_ivp
import matplotlib.pyplot as plt

# 定义器官模型参数
k_absorption = 0.5  # 肠道吸收速率常数
k_metabolism = 0.3  # 肝脏代谢速率常数
k_excretion = 0.2   # 肾脏排泄速率常数
k_heart = 0.1       # 心脏毒性累积速率常数
interaction_factor = 0.05  # 器官间交互因子

# 定义动力学模型
def organ_model(t, y):
    intestine, liver, kidney, heart = y
    # 肠道吸收
    d_intestine = -k_absorption * intestine
    # 肝脏代谢
    d_liver = k_absorption * intestine - k_metabolism * liver
    # 肾脏排泄
    d_kidney = k_metabolism * liver - k_excretion * kidney
    # 心脏毒性累积(受肝脏和肾脏影响)
    d_heart = k_heart * (liver + kidney) - interaction_factor * heart
    return [d_intestine, d_liver, d_kidney, d_heart]

# 初始条件
y0 = [100, 0, 0, 0]  # 初始药物量在肠道,其他器官为0
t_span = (0, 50)     # 模拟时间范围
t_eval = np.linspace(t_span[0], t_span[1], 500)  # 时间点

# 求解微分方程
sol = solve_ivp(organ_model, t_span, y0, t_eval=t_eval)

# 绘制结果
plt.plot(sol.t, sol.y[0], label='Intestine')
plt.plot(sol.t, sol.y[1], label='Liver')
plt.plot(sol.t, sol.y[2], label='Kidney')
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

百态老人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值