SparklingTheo
码龄7年
关注
提问 私信
  • 博客:58,781
    58,781
    总访问量
  • 48
    原创
  • 64,581
    排名
  • 183
    粉丝
  • 0
    铁粉
  • 学习成就
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2017-12-17
博客简介:

GitHub-ChauserMondieu

查看详细资料
  • 原力等级
    成就
    当前等级
    4
    当前总分
    560
    当月
    17
个人成就
  • 获得225次点赞
  • 内容获得6次评论
  • 获得371次收藏
  • 代码片获得3,731次分享
创作历程
  • 16篇
    2024年
  • 4篇
    2023年
  • 6篇
    2022年
  • 2篇
    2021年
  • 22篇
    2020年
成就勋章
TA的专栏
  • 大数据-linux
    7篇
  • 工具技术分享-python
    13篇
  • 数据分析
    2篇
  • 机器学习
    3篇
  • anaconda - jupyter notebook
    3篇
  • mac-python
    1篇
  • 大数据-spark
    4篇
  • 工具技术分享-git
    3篇
  • 工具技术分享-Java
    11篇
  • 工具技术分享-windows
    2篇
  • 设计模式与架构
    1篇
  • 数据结构与算法
    1篇
兴趣领域 设置
  • 数据结构与算法
    排序算法推荐算法
  • 人工智能
    tensorflowpytorchnlp聚类回归
创作活动更多

HarmonyOS开发者社区有奖征文来啦!

用文字记录下您与HarmonyOS的故事。参与活动,还有机会赢奖,快来加入我们吧!

0人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

python 读取csv文件到mysql操作

本文主要介绍如何通过python将csv文件导入mysql数据库
原创
发布博客 2024.08.05 ·
465 阅读 ·
3 点赞 ·
0 评论 ·
5 收藏

mac. mysql 设置查询结果直接写入文件

解决mysql结果导出到文件需求
原创
发布博客 2024.06.28 ·
318 阅读 ·
4 点赞 ·
0 评论 ·
5 收藏

特征选择|模型解释|Pearson相关系数|JS散度|SHAP算法

本文主要介绍特征选择过程中常用的两种大方法:相关性分析和模型解释,相关性分析中介绍了Peaerson相关系数和JS散度的方法,模型解释中主要介绍了SHAP算法
原创
发布博客 2024.06.03 ·
1335 阅读 ·
8 点赞 ·
0 评论 ·
20 收藏

jupyter notebook anaconda环境下查看|加载|更换内核

倘若我们发现使用pip安装相应包的虚拟环境和jupyter notebook的python解释器位置不同,这时我们需要将jupyter notebook的python解释器位置调整至虚拟环境中相应位置,有两种方法。在conda虚拟环境中使用pip安装相应package, 但是在jupyter notebook中加载该package时报错。此时,除去包安装出现问题以外,我们需要考虑是否是包安装位置与notebook引擎位置不一致。
原创
发布博客 2024.05.31 ·
527 阅读 ·
3 点赞 ·
0 评论 ·
5 收藏

决策树|随机森林 GBDT XGBoost|集成学习

本文首先介绍了决策树的数学背景,同时介绍集成学习相关的bagging boosting 模型理论,最后介绍了随机森林模型和两种最常用的随机森林模型算法GBDT 和XGBoost
原创
发布博客 2024.05.27 ·
1153 阅读 ·
15 点赞 ·
1 评论 ·
27 收藏

指标预警和指标归因分析

本文介绍并列举了指标预警和指标归因分析的手段及代码案例
原创
发布博客 2024.05.27 ·
1345 阅读 ·
9 点赞 ·
0 评论 ·
15 收藏

ABtest假设检验知识|配对检验|比率检验|单向表-列联表检验

本文介绍了ABTest中两样本均值差检验的统计学原理,并给出具体实例进行两样本均值差检验,同时补充的配对检验|比率检验|单向表检验|列联表检验的相应方法
原创
发布博客 2024.05.25 ·
1216 阅读 ·
9 点赞 ·
0 评论 ·
19 收藏

KNN及降维预处理方法LDA|PCA|MDS

本篇旨在介绍KNN原理及python|R实现,并针对降低维度做了LDA PCA 及MDS的介绍
原创
发布博客 2024.05.22 ·
867 阅读 ·
20 点赞 ·
0 评论 ·
28 收藏

Exception in thread “main“ org.xerial.snappy.SnappyError: [FAILED_TO_LOAD_NATIVE_LIBRARY] null

libsnappy.so
原创
发布博客 2024.04.05 ·
486 阅读 ·
2 点赞 ·
0 评论 ·
4 收藏

libsnappyjava.so

发布资源 2024.04.05 ·
so

spark-hive连接操作流程、踩坑及解决方法

hive安装;spark-hive兼容版本编译;spark-sql操作hive表格
原创
发布博客 2024.04.05 ·
1754 阅读 ·
19 点赞 ·
0 评论 ·
11 收藏

报错Unable to instantiate SparkSession with Hive support because Hive classes are not found.解决方法

java.lang.ClassNotFoundException: org.apache.spark.sql.hive.HiveSessionState;javax.jdo.JDOFatalInternalException: Error creating transactional connection factory
原创
发布博客 2024.04.04 ·
2086 阅读 ·
26 点赞 ·
0 评论 ·
29 收藏

SparkSQL基本数据抽象RDD/DataFrame/Dataset介绍[附操作代码]

spark SQL数据结构,RDD|DataFrame|Dataset 结构梳理和相互转换
原创
发布博客 2024.03.31 ·
590 阅读 ·
3 点赞 ·
0 评论 ·
8 收藏

伪分布式部署Hive

Hive伪分布式安装
原创
发布博客 2024.03.22 ·
524 阅读 ·
3 点赞 ·
0 评论 ·
3 收藏

hdfs shell操作助记总结

hadoop shell 操作助记总结
原创
发布博客 2024.03.13 ·
527 阅读 ·
8 点赞 ·
0 评论 ·
7 收藏

macos安装local模式spark

c. 添加以下三条连接,使得spark能够找到对应的hadoop和相应的包。2. 打开sparkshell。然后执行并生效系统环境变量。然后执行并生效系统环境变量。可以看到很多输出,最后找到。b. 其次替换配置文件。
原创
发布博客 2024.02.07 ·
1139 阅读 ·
7 点赞 ·
0 评论 ·
10 收藏

mac解决anaconda虚拟环境安装jupyter notebook问题

安装时使用 -m 参数能够指定该python解释器安装在当前默认的路径下,也就是我们目前打开的虚拟环境路径之下。因此为能够增加nbextension功能,需要进行如下操作。使用远端镜像比较慢,可以采用国内景象进行下载,相关的。在建立虚拟环境时,要指定使用python的版本。此时的jupyter notebook 亲测是。此时相应环境的python解释器将会被关联在。使用 -i 参数符我们便可以手动设置下载镜像。我的虚拟环境显示如下。
原创
发布博客 2024.01.14 ·
701 阅读 ·
9 点赞 ·
1 评论 ·
8 收藏

mac jupyternote崩溃恢复

dump文件就会出现在该路径下filename文件中。如果使用.py结尾,则可以通过pyCharm直接进行查看。jupyter notebook 同样支持历史dump,但是注意dump文件只限于本次会话中存在过的各种操作。使用方法是:在该会话中的任意一个jupyter notebook 交互界面的代码单元格中输入。所有经过python解释器解释过的内容都会记录在python历史文件中,位置在。然后可以通过vim操作进行查看。如果还不是很清楚,可以参照。
原创
发布博客 2023.11.24 ·
445 阅读 ·
6 点赞 ·
0 评论 ·
4 收藏

python matplotlib绘图参数总结

首先建立画布,建议使用,将所有的绘制任务都分配到ax对象上进行。注意,除非使用1*1的画布分区,否则此时ax将会是一个二维数组,需要以数组的形式获取不同位置的ax对象。
原创
发布博客 2023.11.13 ·
482 阅读 ·
1 点赞 ·
0 评论 ·
9 收藏

github分支处理stash,rebase,merge,fastforward以及分支代码提交主分支

Git采取的是增量式文件存储系统,类似于hadoop中的redo log 或者是MySql主从模式下的bin log,因此每一次提交实质上记录的是与上一次提交相比不同的记录。分为三个区的目的也非常明确,就是能够将本地未跟踪代码以及仓库版本代码进行隔离,并且能够极大程度上为本地未跟踪代码入库提供便利。,stash操作只能以快照的形式处理每一次压栈,并且每一次压栈所存储的快照之间是不能够合并的。是git软件未对代码进行跟踪的位置,我们修改代码就如同没有版本管理软件一般操作;暂存区(staging area)
原创
发布博客 2023.11.03 ·
332 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏
加载更多