spark streaming +kafka(Python版)_7

@Spark实战(七)spark streaming +kafka(Python版)

                版权声明:本文为博主原创文章,未经博主允许不得转载。                    https://blog.csdn.net/u013305783/article/details/86513285                </div>
                      <link rel="stylesheet" href="https://csdnimg.cn/release/phoenix/template/css/ck_htmledit_views-cd6c485e8b.css">
                          <div id="content_views" class="markdown_views prism-atom-one-dark">
        <!-- flowchart 箭头图标 勿删 -->
        <svg xmlns="http://www.w3.org/2000/svg" style="display: none;">
          <path stroke-linecap="round" d="M5,0 0,2.5 5,5z" id="raphael-marker-block" style="-webkit-tap-highlight-color: rgba(0, 0, 0, 0);"></path>
        </svg>
        <h1><a name="t0"></a><a id="ZooKeeper_0" target="_blank"></a>一、ZooKeeper集群搭建</h1>

(一)、集群部署的基本流程

   下载安装包、解压安装包、修改配置文件、分发安装包、启动集群

(二)、ZooKeeper集群搭建

1、下载安装包

   去官网下载zookeeper压缩包

2、解压安装包

   tar -zxvf zookeeper-3.4.12.tar.gz解压并重命名为zookeeper

3、修改配置文件

cd zookeeper/conf
cp zoo_sample.cfg zoo.cfg

 
 
  • 1
  • 2
   vi zoo.cfg 添加内容:
dataDir=/home/hadoop/zookeeper/data
dataLogDir=/home/hadoop/zookeeper/log
server.1=slave1:2888:3888 (主机名, 心跳端口、数据端口)
server.2=slave2:2888:3888
server.3=slave3:2888:3888

 
 
  • 1
  • 2
  • 3
  • 4
  • 5

   创建文件夹:

cd /home/hadoop/zookeeper/
mkdir -m 755 data
mkdir -m 755 log

 
 
  • 1
  • 2
  • 3
   在data文件夹下新建myid文件,myid的文件内容为:
1

 
 
  • 1

4、修改系统环境变量

vi /etc/profile(修改文件)
添加内容:
export ZOOKEEPER_HOME=/home/hadoop/zookeeper
export PATH=$PATH:$ZOOKEEPER_HOME/bin

执行source /etc/profile

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

5、分发安装包

scp -r /home/hadoop/zookeeper hadoop@mini2:/home/hadoop/
scp -r /home/hadoop/zookeeper hadoop@mini3:/home/hadoop/

 
 
  • 1
  • 2

6、修改其他机器的配置文件

   到mini2上:修改myid为:2,到mini3上:修改myid为:3

7、启动(每台机器)

zkServer.sh start

 
 
  • 1

8、查看集群状态

1、	jps(查看进程)
2、	zkServer.sh status(查看集群状态,主从信息)

 
 
  • 1
  • 2
       

二、kafka集群安装

(一)、Kafka集群部署

1、下载安装包

   去apache官网下载kafka

2、解压安装包

   tar -zxvf kafka_2.11-2.0.1.tgz 并重命名为kafka

3、修改配置文件

cp   /home/hadoop/kafka/config/server.properties
/home/hadoop/kafka/config/server.properties.bak
vi  /home/hadoop/kafka/config/server.properties

 
 
  • 1
  • 2
  • 3

   添加如下内容:

#broker的全局唯一编号,不能重复
broker.id=0

#用来监听链接的端口,producer或consumer将在此端口建立连接
port=9092

#处理网络请求的线程数量
num.network.threads=3

#用来处理磁盘IO的线程数量
num.io.threads=8

#发送套接字的缓冲区大小
socket.send.buffer.bytes=102400

#接受套接字的缓冲区大小
socket.receive.buffer.bytes=102400

#请求套接字的缓冲区大小
socket.request.max.bytes=104857600

#kafka运行日志存放的路径
log.dirs=/tmp/kafka-logs

#topic在当前broker上的分片个数
num.partitions=2

#用来恢复和清理data下数据的线程数量
num.recovery.threads.per.data.dir=1

#segment文件保留的最长时间,超时将被删除
log.retention.hours=168

#滚动生成新的segment文件的最大时间
log.roll.hours=168

#日志文件中每个segment的大小,默认为1G
log.segment.bytes=1073741824

#周期性检查文件大小的时间
log.retention.check.interval.ms=300000

#日志清理是否打开
log.cleaner.enable=true

#broker需要使用zookeeper保存meta数据
zookeeper.connect=mini1:2181,mini2:2181,mini3:2181

#zookeeper链接超时时间
zookeeper.connection.timeout.ms=6000

#partion buffer中,消息的条数达到阈值,将触发flush到磁盘
log.flush.interval.messages=10000

#消息buffer的时间,达到阈值,将触发flush到磁盘
log.flush.interval.ms=3000

#删除topic需要server.properties中设置delete.topic.enable=true否则只是标记删除
delete.topic.enable=true

#此处的host.name为本机IP(重要),如果不改,则客户端会抛出:Producer connection to localhost:9092 unsuccessful 错误!
host.name=mini1

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62

4、分发安装包

   scp -r kafka mini2:/home/hadoop将kafka复制到mini2和mini3上,并将broker.id改为不重复数字,host.name也改为相应的host

5、启动集群

   依次在各节点上启动kafka bin/kafka-server-start.sh config/server.properties

6、Kafka常用操作命令

查看当前服务器中的所有topic
bin/kafka-topics.sh --list --zookeeper  mini1:2181
创建topic
bin/kafka-topics.sh --create --zookeeper mini1:2181 --replication-factor 1 --partitions 1 --topic test
删除topic
bin/kafka-topics.sh --delete --zookeeper mini1:2181 --topic test
需要server.properties中设置delete.topic.enable=true否则只是标记删除或者直接重启。
通过shell命令发送消息
kafka-console-producer.sh --broker-list mini1:9092 --topic itheima
通过shell消费消息
 bin/kafka-console-consumer.sh --zookeeper mini1:2181 --from-beginning --topic test1
查看消费位置
sh kafka-run-class.sh kafka.tools.ConsumerOffsetChecker --zookeeper mini1:2181 --group testGroup
查看某个Topic的详情
sh kafka-topics.sh --topic test --describe --zookeeper mini1:2181

 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

三、Spark streaming + spark

(一)、环境准备

   下载spark-streaming-kafka-0-8_2.11-2.4.0.jar,因为目前spark-streaming-kafka-1.0还不支持python。

(二)、示例代码

from pyspark.sql import SparkSession
from pyspark.streaming import StreamingContext
from pyspark.streaming.kafka import KafkaUtils
offsets = []

def out_put(m):
print(m)

def store_offset(rdd):
global offsets
offsets = rdd.offsetRanges()
return rdd

def print_offset(rdd):
for o in offsets:
print
“%s %s %s %s %s” % (o.topic, o.partition, o.fromOffset, o.untilOffset, o.untilOffset - o.fromOffset)

if name == “main”:
spark = SparkSession
.builder
.appName(“PythonWordCount”)
.master(“spark://mini1:7077”)
.getOrCreate()

sc = spark.sparkContext
ssc = StreamingContext(sc, 5)
sc.setCheckpointDir("/home/hadoop/log/kafka")

def updateFunc(new_values, last_sum):
    return sum(new_values) + (last_sum or 0)
# kafkaStream = KafkaUtils.createStream(ssc, \
# [ZK quorum], [consumer group id], [per-topic number of Kafka partitions to consume])
msg_stream = KafkaUtils.createDirectStream(ssc, ['test'],
                                           kafkaParams={"metadata.broker.list": "mini1:9092,"})
result = msg_stream.map(lambda x: x[1]).flatMap(lambda x: x.split(" ")).map(lambda x: (x, 1)).updateStateByKey(updateFunc,sc.defaultParallelism)
msg_stream.transform(store_offset,).foreachRDD(print_offset)
result.pprint()
ssc.start()
ssc.awaitTermination()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44

    使用以下命令执行

spark-submit --master spark://mini1:7077 --class  sparkstreaming.KafkaStreaming --jars /home/hadoop/jar/kafka/spark-streaming-kafka-0-8-assembly_2.11-2.4.0.jar --packages org.apache.spark:spark-streaming-kafka-0-8_2.11:2.4.0  /tmp/pycharm_project_563/day5/DirectKafkaCount.py

 
 
  • 1

   另起一个回话:执行生产者指令:

kafka-console-producer.sh --broker-list mini1:9092 --topic test

 
 
  • 1

   此时python端就能看到获取到数据

      </div>
      <link href="https://csdnimg.cn/release/phoenix/mdeditor/markdown_views-e44c3c0e64.css" rel="stylesheet">
              </div>

欢迎使用Markdown编辑器

你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Markdown编辑器, 可以仔细阅读这篇文章,了解一下Markdown的基本语法知识。

新的改变

我们对Markdown编辑器进行了一些功能拓展与语法支持,除了标准的Markdown编辑器功能,我们增加了如下几点新功能,帮助你用它写博客:

  1. 全新的界面设计 ,将会带来全新的写作体验;
  2. 在创作中心设置你喜爱的代码高亮样式,Markdown 将代码片显示选择的高亮样式 进行展示;
  3. 增加了 图片拖拽 功能,你可以将本地的图片直接拖拽到编辑区域直接展示;
  4. 全新的 KaTeX数学公式 语法;
  5. 增加了支持甘特图的mermaid语法1 功能;
  6. 增加了 多屏幕编辑 Markdown文章功能;
  7. 增加了 焦点写作模式、预览模式、简洁写作模式、左右区域同步滚轮设置 等功能,功能按钮位于编辑区域与预览区域中间;
  8. 增加了 检查列表 功能。

功能快捷键

撤销:Ctrl/Command + Z
重做:Ctrl/Command + Y
加粗:Ctrl/Command + B
斜体:Ctrl/Command + I
标题:Ctrl/Command + Shift + H
无序列表:Ctrl/Command + Shift + U
有序列表:Ctrl/Command + Shift + O
检查列表:Ctrl/Command + Shift + C
插入代码:Ctrl/Command + Shift + K
插入链接:Ctrl/Command + Shift + L
插入图片:Ctrl/Command + Shift + G

合理的创建标题,有助于目录的生成

直接输入1次#,并按下space后,将生成1级标题。
输入2次#,并按下space后,将生成2级标题。
以此类推,我们支持6级标题。有助于使用TOC语法后生成一个完美的目录。

如何改变文本的样式

强调文本 强调文本

加粗文本 加粗文本

标记文本

删除文本

引用文本

H2O is是液体。

210 运算结果是 1024.

插入链接与图片

链接: link.

图片: Alt

带尺寸的图片: Alt

居中的图片: Alt

居中并且带尺寸的图片: Alt

当然,我们为了让用户更加便捷,我们增加了图片拖拽功能。

如何插入一段漂亮的代码片

博客设置页面,选择一款你喜欢的代码片高亮样式,下面展示同样高亮的 代码片.

// An highlighted block
var foo = 'bar';

生成一个适合你的列表

  • 项目
    • 项目
      • 项目
  1. 项目1
  2. 项目2
  3. 项目3
  • 计划任务
  • 完成任务

创建一个表格

一个简单的表格是这么创建的:

项目Value
电脑$1600
手机$12
导管$1

设定内容居中、居左、居右

使用:---------:居中
使用:----------居左
使用----------:居右

第一列第二列第三列
第一列文本居中第二列文本居右第三列文本居左

SmartyPants

SmartyPants将ASCII标点字符转换为“智能”印刷标点HTML实体。例如:

TYPEASCIIHTML
Single backticks'Isn't this fun?'‘Isn’t this fun?’
Quotes"Isn't this fun?"“Isn’t this fun?”
Dashes-- is en-dash, --- is em-dash– is en-dash, — is em-dash

创建一个自定义列表

Markdown
Text-to- HTML conversion tool
Authors
John
Luke

如何创建一个注脚

一个具有注脚的文本。2

注释也是必不可少的

Markdown将文本转换为 HTML

KaTeX数学公式

您可以使用渲染LaTeX数学表达式 KaTeX:

Gamma公式展示 Γ ( n ) = ( n − 1 ) ! ∀ n ∈ N \Gamma(n) = (n-1)!\quad\forall n\in\mathbb N Γ(n)=(n1)!nN 是通过欧拉积分

Γ ( z ) = ∫ 0 ∞ t z − 1 e − t d t &ThinSpace; . \Gamma(z) = \int_0^\infty t^{z-1}e^{-t}dt\,. Γ(z)=0tz1etdt.

你可以找到更多关于的信息 LaTeX 数学表达式here.

新的甘特图功能,丰富你的文章

Mon 06 Mon 13 Mon 20 已完成 进行中 计划一 计划二 现有任务 Adding GANTT diagram functionality to mermaid
  • 关于 甘特图 语法,参考 这儿,

UML 图表

可以使用UML图表进行渲染。 Mermaid. 例如下面产生的一个序列图::

张三 李四 王五 你好!李四, 最近怎么样? 你最近怎么样,王五? 我很好,谢谢! 我很好,谢谢! 李四想了很长时间, 文字太长了 不适合放在一行. 打量着王五... 很好... 王五, 你怎么样? 张三 李四 王五

这将产生一个流程图。:

链接
长方形
圆角长方形
菱形
  • 关于 Mermaid 语法,参考 这儿,

FLowchart流程图

我们依旧会支持flowchart的流程图:

Created with Raphaël 2.2.0 开始 我的操作 确认? 结束 yes no
  • 关于 Flowchart流程图 语法,参考 这儿.

导出与导入

导出

如果你想尝试使用此编辑器, 你可以在此篇文章任意编辑。当你完成了一篇文章的写作, 在上方工具栏找到 文章导出 ,生成一个.md文件或者.html文件进行本地保存。

导入

如果你想加载一篇你写过的.md文件或者.html文件,在上方工具栏可以选择导入功能进行对应扩展名的文件导入,
继续你的创作。


  1. mermaid语法说明 ↩︎

  2. 注脚的解释 ↩︎

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值