@Spark实战(七)spark streaming +kafka(Python版)
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u013305783/article/details/86513285 </div>
<link rel="stylesheet" href="https://csdnimg.cn/release/phoenix/template/css/ck_htmledit_views-cd6c485e8b.css">
<div id="content_views" class="markdown_views prism-atom-one-dark">
<!-- flowchart 箭头图标 勿删 -->
<svg xmlns="http://www.w3.org/2000/svg" style="display: none;">
<path stroke-linecap="round" d="M5,0 0,2.5 5,5z" id="raphael-marker-block" style="-webkit-tap-highlight-color: rgba(0, 0, 0, 0);"></path>
</svg>
<h1><a name="t0"></a><a id="ZooKeeper_0" target="_blank"></a>一、ZooKeeper集群搭建</h1>
(一)、集群部署的基本流程
下载安装包、解压安装包、修改配置文件、分发安装包、启动集群
(二)、ZooKeeper集群搭建
1、下载安装包
去官网下载zookeeper压缩包
2、解压安装包
tar -zxvf zookeeper-3.4.12.tar.gz解压并重命名为zookeeper
3、修改配置文件
cd zookeeper/conf
cp zoo_sample.cfg zoo.cfg
- 1
- 2
dataDir=/home/hadoop/zookeeper/data
dataLogDir=/home/hadoop/zookeeper/log
server.1=slave1:2888:3888 (主机名, 心跳端口、数据端口)
server.2=slave2:2888:3888
server.3=slave3:2888:3888
- 1
- 2
- 3
- 4
- 5
创建文件夹:
cd /home/hadoop/zookeeper/
mkdir -m 755 data
mkdir -m 755 log
- 1
- 2
- 3
1
- 1
4、修改系统环境变量
vi /etc/profile(修改文件)
添加内容:
export ZOOKEEPER_HOME=/home/hadoop/zookeeper
export PATH=$PATH:$ZOOKEEPER_HOME/bin
执行source /etc/profile
- 1
- 2
- 3
- 4
- 5
- 6
5、分发安装包
scp -r /home/hadoop/zookeeper hadoop@mini2:/home/hadoop/
scp -r /home/hadoop/zookeeper hadoop@mini3:/home/hadoop/
- 1
- 2
6、修改其他机器的配置文件
到mini2上:修改myid为:2,到mini3上:修改myid为:3
7、启动(每台机器)
zkServer.sh start
- 1
8、查看集群状态
1、 jps(查看进程)
2、 zkServer.sh status(查看集群状态,主从信息)
- 1
- 2
二、kafka集群安装
(一)、Kafka集群部署
1、下载安装包
去apache官网下载kafka
2、解压安装包
tar -zxvf kafka_2.11-2.0.1.tgz 并重命名为kafka
3、修改配置文件
cp /home/hadoop/kafka/config/server.properties
/home/hadoop/kafka/config/server.properties.bak
vi /home/hadoop/kafka/config/server.properties
- 1
- 2
- 3
添加如下内容:
#broker的全局唯一编号,不能重复
broker.id=0
#用来监听链接的端口,producer或consumer将在此端口建立连接
port=9092
#处理网络请求的线程数量
num.network.threads=3
#用来处理磁盘IO的线程数量
num.io.threads=8
#发送套接字的缓冲区大小
socket.send.buffer.bytes=102400
#接受套接字的缓冲区大小
socket.receive.buffer.bytes=102400
#请求套接字的缓冲区大小
socket.request.max.bytes=104857600
#kafka运行日志存放的路径
log.dirs=/tmp/kafka-logs
#topic在当前broker上的分片个数
num.partitions=2
#用来恢复和清理data下数据的线程数量
num.recovery.threads.per.data.dir=1
#segment文件保留的最长时间,超时将被删除
log.retention.hours=168
#滚动生成新的segment文件的最大时间
log.roll.hours=168
#日志文件中每个segment的大小,默认为1G
log.segment.bytes=1073741824
#周期性检查文件大小的时间
log.retention.check.interval.ms=300000
#日志清理是否打开
log.cleaner.enable=true
#broker需要使用zookeeper保存meta数据
zookeeper.connect=mini1:2181,mini2:2181,mini3:2181
#zookeeper链接超时时间
zookeeper.connection.timeout.ms=6000
#partion buffer中,消息的条数达到阈值,将触发flush到磁盘
log.flush.interval.messages=10000
#消息buffer的时间,达到阈值,将触发flush到磁盘
log.flush.interval.ms=3000
#删除topic需要server.properties中设置delete.topic.enable=true否则只是标记删除
delete.topic.enable=true
#此处的host.name为本机IP(重要),如果不改,则客户端会抛出:Producer connection to localhost:9092 unsuccessful 错误!
host.name=mini1
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
4、分发安装包
scp -r kafka mini2:/home/hadoop将kafka复制到mini2和mini3上,并将broker.id改为不重复数字,host.name也改为相应的host5、启动集群
依次在各节点上启动kafka bin/kafka-server-start.sh config/server.properties6、Kafka常用操作命令
查看当前服务器中的所有topic
bin/kafka-topics.sh --list --zookeeper mini1:2181
创建topic
bin/kafka-topics.sh --create --zookeeper mini1:2181 --replication-factor 1 --partitions 1 --topic test
删除topic
bin/kafka-topics.sh --delete --zookeeper mini1:2181 --topic test
需要server.properties中设置delete.topic.enable=true否则只是标记删除或者直接重启。
通过shell命令发送消息
kafka-console-producer.sh --broker-list mini1:9092 --topic itheima
通过shell消费消息
bin/kafka-console-consumer.sh --zookeeper mini1:2181 --from-beginning --topic test1
查看消费位置
sh kafka-run-class.sh kafka.tools.ConsumerOffsetChecker --zookeeper mini1:2181 --group testGroup
查看某个Topic的详情
sh kafka-topics.sh --topic test --describe --zookeeper mini1:2181
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
三、Spark streaming + spark
(一)、环境准备
下载spark-streaming-kafka-0-8_2.11-2.4.0.jar,因为目前spark-streaming-kafka-1.0还不支持python。
(二)、示例代码
from pyspark.sql import SparkSession
from pyspark.streaming import StreamingContext
from pyspark.streaming.kafka import KafkaUtils
offsets = []
def out_put(m):
print(m)
def store_offset(rdd):
global offsets
offsets = rdd.offsetRanges()
return rdd
def print_offset(rdd):
for o in offsets:
print
“%s %s %s %s %s” % (o.topic, o.partition, o.fromOffset, o.untilOffset, o.untilOffset - o.fromOffset)
if name == “main”:
spark = SparkSession
.builder
.appName(“PythonWordCount”)
.master(“spark://mini1:7077”)
.getOrCreate()
sc = spark.sparkContext
ssc = StreamingContext(sc, 5)
sc.setCheckpointDir("/home/hadoop/log/kafka")
def updateFunc(new_values, last_sum):
return sum(new_values) + (last_sum or 0)
# kafkaStream = KafkaUtils.createStream(ssc, \
# [ZK quorum], [consumer group id], [per-topic number of Kafka partitions to consume])
msg_stream = KafkaUtils.createDirectStream(ssc, ['test'],
kafkaParams={"metadata.broker.list": "mini1:9092,"})
result = msg_stream.map(lambda x: x[1]).flatMap(lambda x: x.split(" ")).map(lambda x: (x, 1)).updateStateByKey(updateFunc,sc.defaultParallelism)
msg_stream.transform(store_offset,).foreachRDD(print_offset)
result.pprint()
ssc.start()
ssc.awaitTermination()
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
使用以下命令执行
spark-submit --master spark://mini1:7077 --class sparkstreaming.KafkaStreaming --jars /home/hadoop/jar/kafka/spark-streaming-kafka-0-8-assembly_2.11-2.4.0.jar --packages org.apache.spark:spark-streaming-kafka-0-8_2.11:2.4.0 /tmp/pycharm_project_563/day5/DirectKafkaCount.py
- 1
另起一个回话:执行生产者指令:
kafka-console-producer.sh --broker-list mini1:9092 --topic test
- 1
此时python端就能看到获取到数据
</div>
<link href="https://csdnimg.cn/release/phoenix/mdeditor/markdown_views-e44c3c0e64.css" rel="stylesheet">
</div>
欢迎使用Markdown编辑器
你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Markdown编辑器, 可以仔细阅读这篇文章,了解一下Markdown的基本语法知识。
新的改变
我们对Markdown编辑器进行了一些功能拓展与语法支持,除了标准的Markdown编辑器功能,我们增加了如下几点新功能,帮助你用它写博客:
- 全新的界面设计 ,将会带来全新的写作体验;
- 在创作中心设置你喜爱的代码高亮样式,Markdown 将代码片显示选择的高亮样式 进行展示;
- 增加了 图片拖拽 功能,你可以将本地的图片直接拖拽到编辑区域直接展示;
- 全新的 KaTeX数学公式 语法;
- 增加了支持甘特图的mermaid语法1 功能;
- 增加了 多屏幕编辑 Markdown文章功能;
- 增加了 焦点写作模式、预览模式、简洁写作模式、左右区域同步滚轮设置 等功能,功能按钮位于编辑区域与预览区域中间;
- 增加了 检查列表 功能。
功能快捷键
撤销:Ctrl/Command + Z
重做:Ctrl/Command + Y
加粗:Ctrl/Command + B
斜体:Ctrl/Command + I
标题:Ctrl/Command + Shift + H
无序列表:Ctrl/Command + Shift + U
有序列表:Ctrl/Command + Shift + O
检查列表:Ctrl/Command + Shift + C
插入代码:Ctrl/Command + Shift + K
插入链接:Ctrl/Command + Shift + L
插入图片:Ctrl/Command + Shift + G
合理的创建标题,有助于目录的生成
直接输入1次#,并按下space后,将生成1级标题。
输入2次#,并按下space后,将生成2级标题。
以此类推,我们支持6级标题。有助于使用TOC
语法后生成一个完美的目录。
如何改变文本的样式
强调文本 强调文本
加粗文本 加粗文本
标记文本
删除文本
引用文本
H2O is是液体。
210 运算结果是 1024.
插入链接与图片
链接: link.
图片:
带尺寸的图片:
居中的图片:
居中并且带尺寸的图片:
当然,我们为了让用户更加便捷,我们增加了图片拖拽功能。
如何插入一段漂亮的代码片
去博客设置页面,选择一款你喜欢的代码片高亮样式,下面展示同样高亮的 代码片
.
// An highlighted block
var foo = 'bar';
生成一个适合你的列表
- 项目
- 项目
- 项目
- 项目
- 项目1
- 项目2
- 项目3
- 计划任务
- 完成任务
创建一个表格
一个简单的表格是这么创建的:
项目 | Value |
---|---|
电脑 | $1600 |
手机 | $12 |
导管 | $1 |
设定内容居中、居左、居右
使用:---------:
居中
使用:----------
居左
使用----------:
居右
第一列 | 第二列 | 第三列 |
---|---|---|
第一列文本居中 | 第二列文本居右 | 第三列文本居左 |
SmartyPants
SmartyPants将ASCII标点字符转换为“智能”印刷标点HTML实体。例如:
TYPE | ASCII | HTML |
---|---|---|
Single backticks | 'Isn't this fun?' | ‘Isn’t this fun?’ |
Quotes | "Isn't this fun?" | “Isn’t this fun?” |
Dashes | -- is en-dash, --- is em-dash | – is en-dash, — is em-dash |
创建一个自定义列表
-
Markdown
- Text-to- HTML conversion tool Authors
- John
- Luke
如何创建一个注脚
一个具有注脚的文本。2
注释也是必不可少的
Markdown将文本转换为 HTML。
KaTeX数学公式
您可以使用渲染LaTeX数学表达式 KaTeX:
Gamma公式展示 Γ ( n ) = ( n − 1 ) ! ∀ n ∈ N \Gamma(n) = (n-1)!\quad\forall n\in\mathbb N Γ(n)=(n−1)!∀n∈N 是通过欧拉积分
Γ ( z ) = ∫ 0 ∞ t z − 1 e − t d t   . \Gamma(z) = \int_0^\infty t^{z-1}e^{-t}dt\,. Γ(z)=∫0∞tz−1e−tdt.
你可以找到更多关于的信息 LaTeX 数学表达式here.
新的甘特图功能,丰富你的文章
- 关于 甘特图 语法,参考 这儿,
UML 图表
可以使用UML图表进行渲染。 Mermaid. 例如下面产生的一个序列图::
这将产生一个流程图。:
- 关于 Mermaid 语法,参考 这儿,
FLowchart流程图
我们依旧会支持flowchart的流程图:
- 关于 Flowchart流程图 语法,参考 这儿.
导出与导入
导出
如果你想尝试使用此编辑器, 你可以在此篇文章任意编辑。当你完成了一篇文章的写作, 在上方工具栏找到 文章导出 ,生成一个.md文件或者.html文件进行本地保存。
导入
如果你想加载一篇你写过的.md文件或者.html文件,在上方工具栏可以选择导入功能进行对应扩展名的文件导入,
继续你的创作。
注脚的解释 ↩︎