Python数据分析 - 简单分析 数据标准化scale 区间分组cut

简单计算

//price*num=sum
例如:
fome pandas import read_csv
df = read_csv('filepath\\filename.csv')
result = df.price*df.num
df['sum'] = result


数据标准化 

将数据按比例缩放,一般用0-1标准化
x*=(x-min)/(max-min) #百分化乘以100
scale = ( df.score - df.score.min() ) / (df.score.max() - df.score.min() )


数据分组

cut函数
cut(series, bins, right=True, labels=NULL)
#cut(分组的数据,划分的数组区间,划分分组右边是否闭合(默认闭合),分组自定义标签(可不自定义))
例如:
#对df文件的cost列分组进行操作
bins = [min(df.cost)-1, 20, 40, 60, 80, 100, max(df.cost)+1]
labels=['20一下', '20-40', '40
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值