问:有30名学生,参加一次满分为100分的考试。已知该次考试的平均分是85分,且分数都为整数,那么不及格(小于60分)的学生最多有()。
A 9人
B 10人【正确答案】
C 11人
D 12人
这种题考查我们对平均数的直觉,不及格的分数是0~59分,及格分是60~100分,想让不及格的尽可能的多,那么就会拉低平均分,那我们想办法让每个不及格的人拉低的影响最少,那所有不及格的人都考59分的了。
同理,想让及格的人尽可能的少,那就要让他们拉高平均分的影响力,每人都多拉一点,所以让及格的人都考100分,这样两者配合,才能让平均分=85。
设不及格的人有n位,那么总分就是59n+100(30-n)≥85*30,注意,如果能等于的话就正好,但是有可能平均数出现小数,考虑这种情况,我们可以接受总分大于85*30,为了使之正好等于,可以让某些同学多扣点分以满足条件。但是不能接受小于85*30,因为无论是及格的人还是不及格的人,他们的分数都不能再增加了,否则题目要求就无法满足了。总之,为了让n越大,总分就越小,但不可能一直小下去,一定要大于等于那个极限值。
所以要让不等式成立,求n的最大值,也就是41n≤450,n最大等于10.。