电力煤矿跑冒滴漏监测基于YOLOv7扩展了高效率程增强专注力互联网,称之为Extended-ELAN (通称E-ELAN) 。 在大规模ELAN中,不管梯度方向路径长度和块总数怎样,互联网都达到了平衡状态。 但如果无尽地层叠测算块,这类平衡状态也有可能被毁坏,主要参数使用率会降低。
Yolov7超过了目前已知的所有检测器,无论是从速度还是精度上,最高的模型AP值达到56.8%,有着30FPS。Yolov7-E6检测器(56FPS、55.9%AP)超过了所有的transformer-based的检测器如SWIN-L Cascade-Mask R-CNN(9.2FPS A100,53.9AP),速度是其509%倍.
YOLOv7 的发展方向与当前主流的实时目标检测器不同,研究团队希望它能够同时支持移动 GPU 和从边缘到云端的 GPU 设备。除了架构优化之外,该研究提出的方法还专注于训练过程的优化,将重点放在了一些优化模块和优化方法上。识别摔倒准确来说应使用人体姿态检测,通过判断前后帧的人体关键点的坐标变化来判断