- 博客(14)
- 资源 (1)
- 收藏
- 关注
原创 吴恩达深度学习 单隐藏层的2分类神经网络
我们要建立一个神经网络,它有一个隐藏层。构建具有单隐藏层的2类分类神经网络。使用具有非线性激活功能激活函数,例如tanh。计算交叉熵损失(损失函数)。实现向前和向后传播。numpy:是用Python进行科学计算的基本软件包。sklearn:为数据挖掘和数据分析提供的简单高效的工具。matplotlib :是一个用于在Python中绘制图表的库。testCases:提供了一些测试示例来评估函数的正确性planar_utils :提供了在这个任务中使用的各种有用的功能import n.
2020-05-13 00:55:35 738
原创 吴恩达深度学习 logistic猫图片分类
logistic分类图片中是否包含猫numpy :是用Python进行科学计算的基本软件包。h5py:是与H5文件中存储的数据集进行交互的常用软件包。matplotlib:是一个著名的库,用于在Python中绘制图表。lr_utils :在本文的资料包里,一个加载资料包里面的数据的简单功能的库。import numpy as npimport matplotlib.pyplot as plt#是与H5文件中存储的数据集进行交互的常用软件包import h5pyfrom lr_utils i
2020-05-12 23:34:58 591
原创 吴恩达机器学习课后习题ex8-2 推荐系统(python实现)
推荐系统数据集协同过滤算法为自己推荐电影在本部分练习中,您将实现协作筛选搜索算法,并将其应用于电影分级数据集。2此数据集由1到5的分级组成。这个数据集有nu=943个用户,nm=1682个电影。数据集import numpy as npimport pandas as pdimport matplotlib.pyplot as pltfrom scipy.io import loa...
2020-05-05 21:28:01 776
原创 吴恩达机器学习课后习题ex8 异常检测(python实现)
异常检测二维数据高维数据在本练习中,您将实现异常检测算法来检测服务器计算机中的异常行为。这些特性测量每台服务器的吞吐量(mb/s)和响应延迟(ms)。当您的服务器正在运行时,您收集了m=307个它们的行为示例,因此有一个未标记的数据集。您怀疑这些示例中的绝大多数是服务器正常运行的“正常”(非异常)示例,但也可能有一些服务器在此数据集中异常运行的示例。您将使用高斯模型来检测数据集中的异常示例。您...
2020-05-05 20:08:08 815 2
原创 吴恩达机器学习课后习题ex7-2 主成分分析PCA(python实现)
PCAPCA实现人脸数据集PCA主要应用于降维度、可视化,以此来加快学习算法的运行速度。PCA实现首先,你将用一个二维的样本集来实验,从而对PCA如何运行的有一个直观的感受,然后再在一个更大的由5000个人脸图像组成的数据集上实现PCA。import numpy as npimport pandas as pdimport matplotlib.pyplot as pltfr...
2020-04-28 12:47:33 771
原创 吴恩达机器学习课后习题ex7 K-means(python实现)
练习7K-means图片压缩K-means在本练习中,您将实现K-means算法并将其用于图像压缩。您将首先从一个示例2D数据集开始,它将帮助您获得K-means算法如何工作的直觉。之后,您将使用K-means算法对图像进行压缩,方法是将图像中出现的颜色数量减少到该图像中最常见的颜色。这部分练习你将使用ex7.m。import numpy as npimport pandas as p...
2020-04-27 21:05:47 1138 1
原创 吴恩达机器学习课后习题ex6支持向量机(python实现)
支持向量机支持向量机垃圾邮件分类支持向量机import numpy as npimport pandas as pdimport matplotlib.pyplot as pltfrom scipy.io import loadmatdata1=loadmat('./data/ex6data1.mat')data=pd.DataFrame(data1['X'],columns=['x...
2020-04-08 17:50:05 1099
原创 吴恩达机器学习课后习题ex5偏差与方差(python实现)
偏差与方差实现三级目录实现在前半部分的练习中,你将实现正则化线性回归,以预测水库中的水位变化,从而预测大坝流出的水量。在下半部分中,您将通过一些调试学习算法的诊断,并检查偏差 v.s. 方差的影响。import numpy as mpimport pandas as pdimport matplotlib .pyplot as pltfrom scipy.io import loa...
2020-04-03 22:21:12 709
原创 吴恩达机器学习课后习题ex4神经网络(python实现)
这里写目录标题一级目录二级目录参考一级目录二级目录参考1、numpy.random模块用法总结https://www.cnblogs.com/JetReily/p/9398148.htmlnp.random.uniform(low,high,size)np.random.rand(d0, d1, …, dn) 生成一个(d0, d1, …, dn)维的数组,数组的元素取自[0, 1...
2020-04-03 15:39:11 1188 2
原创 吴恩达机器学习课后习题ex3(python实现)
ex3一对多神经网络参考一对多在本练习中,您将使用逻辑回归和神经网络来识别手写数字(从0到9)。自动手写数字识别在今天被广泛使用,从识别信封上的邮政编码到识别银行支票上的金额。本练习将向您展示如何将您所学的方法用于此分类任务。在练习的第一部分中,您将扩展先前的logistic回归实现,并将其应用于one-vs-all分类。import numpy as npimport pandas ...
2020-03-30 21:55:49 2069 2
原创 吴恩达机器学习课后习题ex2(python实现)
机器学习课后习题ex2logistic回归二级目录logistic回归建立一个logistic回归模型来预测学生是否被大学录取。假设你是一所大学的系主任,你想根据每个申请者在两次考试中的成绩来决定他们的入学机会。建立一个分类模型来评估申请人根据这两次考试的分数,录取的可能性。二级目录...
2020-03-30 09:48:26 1599 3
原创 吴恩达机器学习课后习题ex1(python实现)
ex1单变量线性回归多变量线性回归吴恩达机器学习资料获取单变量线性回归问题背景:假如你是餐馆老板,已知若干城市中人口和利润的数据(ex1data1.txt),用线性回归方法计算该去哪个城市发展。#导入import numpy as npimport pandas as pdimport matplotlib.pyplot as pltpath='ex1data1.txt'data...
2020-03-26 16:53:46 2443 2
转载 matplotlib:先搞明白plt. /ax./ fig再画
本文转载自https://zhuanlan.zhihu.com/p/93423829,对自己理解matplotlib很有帮助,po到博客上。 理解 axes和fig的区别非常重要!
2020-03-26 15:08:58 220
谷歌浏览器7个好用插件合集,adblock plus、grammarly等
2020-03-26
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人