给定一个二叉树,判断其是否是一个有效的二叉搜索树。
假设一个二叉搜索树具有如下特征:
- 节点的左子树只包含小于当前节点的数。
- 节点的右子树只包含大于当前节点的数。
- 所有左子树和右子树自身必须也是二叉搜索树。
示例 1:
输入:
2
/ \
1 3
输出: true
示例 2:
输入:
5
/ \
1 4
/ \
3 6
输出: false
解释: 输入为: [5,1,4,null,null,3,6]。
根节点的值为 5 ,但是其右子节点值为 4 。
思路一:看每一个节点是不是都大于其左子树的最大值,小于右子树的最小值。
class Solution {
public:
int fun(TreeNode* root){ # 左子树的最大值
if (root == NULL){
return -2146473648;
}
int maxx = root->val;
int maxx1 = max(fun(root->left),maxx);
int maxx2 = max(fun(root->right),maxx);
maxx = max(maxx1,maxx2);
return maxx;
}
int funn(TreeNode* root){ # 右子树的最小值
if (root == NULL){
return 2147483647;
}
int minn = root->val;
int minn1 = min(funn(root->left),minn);
int minn2 = min(funn(root->right),minn);
minn = min(minn1,minn2);
return minn;
}
bool isValidBST(TreeNode* root) {
if (root == NULL)
return true;
bool f1,f2;
if (root->left != NULL)
f1=root->val > fun(root->left);
else
f1=true;
if (root->right != NULL)
f2=root->val < funn(root->right);
else
f2=true;
if (f1 and f2 and isValidBST(root->left) and isValidBST(root->right)) #如果节点值大于左子树的最大值,小于右子树的最小值,且左子树和右子树又分别都是个二叉搜索树,那么即可认为是二叉搜索树。
return true;
else
return false;
}
};
思路二: 将二叉搜索树进行中序遍历,然后对其排序看是否和未排序时一样。
如果是一个二叉搜索树,那么中序遍历应当是一个升序,那么sorted前后的列表应是一样的。
由于题目中要求不能有相同值的节点才能算是一个二叉搜索树。因此对于中序遍历得到的列表,先set一下也就是去重,如果有重复元素,去重后无论咋排序都不会和原来的列表一样了,因为元素个数都不一样了。
class Solution:
def inorder(self,root:TreeNode):
if root == None:
return []
return self.inorder(root.left)+[root.val]+self.inorder(root.right)
def isValidBST(self, root: TreeNode) -> bool:
inorded = self.inorder(root)
return inorded == list(sorted(set(inorded)))