一共有n个数,编号是1~n,最开始每个数各自在一个集合中。
现在要进行m个操作,操作共有两种:
- “M a b”,将编号为a和b的两个数所在的集合合并,如果两个数已经在同一个集合中,则忽略这个操作;
- “Q a b”,询问编号为a和b的两个数是否在同一个集合中;
输入格式
第一行输入整数n和m。
接下来m行,每行包含一个操作指令,指令为“M a b”或“Q a b”中的一种。
输出格式
对于每个询问指令”Q a b”,都要输出一个结果,如果a和b在同一集合内,则输出“Yes”,否则输出“No”。
每个结果占一行。
数据范围
1≤n,m≤1051≤n,m≤105
输入样例:
4 5
M 1 2
M 3 4
Q 1 2
Q 1 3
Q 3 4
输出样例:
Yes
No
Yes
这种集合合并问题就是并查集能做的,但是这道题的数据范围比较大,因此需要路径压缩,否则TLE !!!
路径压缩在代码中就是:
int find(int x){
if (p[x] != x) p[x] = find(p[x]);
return p[x];
}
用find()函数找过一次根节点之后,寻找过程中经过的所有点就都直接指向了根节点。下次再寻找其根节点的时候就是O(1)的时间复杂度了,实现了路径压缩。
#include<iostream>
using namespace std;
const int N = 100100;
int n,m,p[N];
int find(int x){
if (p[x] != x) p[x] = find(p[x]);
return p[x];
}
int main(){
scanf("%d%d",&n,&m);
for(int i = 1 ;i <= n; ++i) p[i] = i;
while(m--){
char op[2];
int a,b;
scanf("%s%d%d", op, &a,&b);
if (op[0] == 'M'){
p[find(a)] = find(b);
}
else{
if (find(a) == find(b)) printf("%s\n","Yes");
else printf("%s\n","No");
}
}
return 0;
}