第4章:降维

常见的降维方法有主成分分析、线性判别分析等

1 PCA最大方差理论

        ~~~~~~~        PCA属于一种线性、非监督、全局的降维算法
        ~~~~~~~        知识点:PCA,线性代数

        ~~~~~~~        问题:如何定义主成分?从这种定义出发,如何设计目标函数使得降维达到提取主成分得目的?针对这个目标函数,如何对PCA问题进行求解?

        ~~~~~~~        PCA得求解方法:
            ~~~~~~~~~~~            (1) 对样本数据进行中心化处理
            ~~~~~~~~~~~            (2) 求样本协方差矩阵
            ~~~~~~~~~~~            (3) 对协方差矩阵进行特征值分解,将特征值从大到小排列
            ~~~~~~~~~~~            (4) 取特征值前d大对应得特征向量 ω 1 , ω 2 , . . . ω d \omega_1,\omega_2,...\omega_d ω1,ω2,...ωd通过以下映射将n维样本映射到d维
                                        ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                        在这里插入图片描述

2 PCA最小平方误差理论

问题:PCA求解得其实是最佳投影方向,即一条直线,这与数学中线性回归问题得目标不谋而合,能否从回归得角度定义PCA得目标并相应地求解问题呢?

        ~~~~~~~        不难发现,这与最大方差角度殊途同归,从不同得目标函数出发,得到了相同得求解方法

3 线性判别分析(LDA)

        ~~~~~~~        LDA是一种有监督学习算法,同时经常被用来对数据进行降维。

        ~~~~~~~        问题:对于具有类别标签得数据,应当如何设计目标函数使得降维得过程中不损失类别信息?在这种目标下,应当如何进行求解?
        ~~~~~~~        LDA首先是为了分类服务得,因此只要找到一个投影方向 ω , \omega, ω,使得投影后得样本尽可能按照原始类别分开。我们不妨从一个简单得二分类问题出发,有 C 1 C_1 C1 C 2 C_2 C2两个类别得样本,两类得均值分别为 μ 1 = 1 N 1 ∑ x ∈ C 1 x , μ 2 = 1 N 2 ∑ x ∈ C 2 x \mu_1=\frac{1}{N_1}\sum_{x\in{C_1}}x,\mu_2=\frac{1}{N_2}\sum_{x\in{C_2}}x μ1=N11xC1x,μ2=N21xC2x我们希望投影之后两类之间得距离尽可能大,距离表示为 D ( C 1 , C 2 ) = ∥ μ 1 ~ − μ 2 ~ ∥ D(C_1,C_2)=\begin{Vmatrix}\widetilde{\mu_1}-\widetilde{\mu_2}\end{Vmatrix} D(C1,C2)=μ1 μ2 其中 μ 1 ~ \widetilde{\mu_1} μ1 μ 2 ~ \widetilde{\mu_2} μ2 表示两类得中心在 ω \omega ω方向上得投影, μ 1 ~ = ω T μ 1 \widetilde{\mu_1}=\omega^T\mu_1 μ1 =ωTμ1 μ 2 ~ = ω T μ 2 \widetilde{\mu_2}=\omega^T\mu_2 μ2 =ωTμ2,因此需要优化得问题为
                                    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                    在这里插入图片描述
        ~~~~~~~        容易发现,当 ω \omega ω方向与 ( μ 1 − μ 2 ) (\mu_1-\mu_2) (μ1μ2)一致得时候,该距离达到最大值,如图4.5(a)得黄棕两种类别得样本点进行降维时,若按照最大化两类投影中心距离得准则,会将样本点投影到下方的黑线上。但是原本可以被线性划分得两类样本,经过投影后有了一定程度得重叠,这显然不能使我们满意
4.5(a)
我们希望得到得投影结果如下图所示,虽然两类得中心在投影之后的距离有所减小,但确使投影之后样本的可区分性提高了
在这里插入图片描述
        ~~~~~~~        仔细观察两种投影方式的区别,可以发现,在图b中,投影后的样本点似乎在每一类中分布得更为集中了,用数学化得语言描述就是每类内部得方差比左图中更小。这就引出了LDA得中心思想——最大化类间距离和最小化类内距离。

4 线性判别分析与主成分分析

问题:LDA和PCA作为经典得降维算法,如何从应用得角度分析其原理的异同?数学推导的角度,两种降维算法在目标函数上有何区别与联系?

        ~~~~~~~        从应用的角度,我们可以掌握一个基本的原则——对无监督的任务使用PCA进行降维,对有监督的则应用LDA。对于非线性数据,可以通过核映射等方法对二者分别进行扩展以得到更好的降维效果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值