蓝桥杯—对局匹配(JAVA实现)

一、题目

资源限制
时间限制:1.0s 内存限制:256.0MB

问题描述
  小明喜欢在一个围棋网站上找别人在线对弈。这个网站上所有注册用户都有一个积分,代表他的围棋水平。

小明发现网站的自动对局系统在匹配对手时,只会将积分差恰好是K的两名用户匹配在一起。如果两人分差小于或大于K,系统都不会将他们匹配。

现在小明知道这个网站总共有N名用户,以及他们的积分分别是A1, A2, … AN。

小明想了解最多可能有多少名用户同时在线寻找对手,但是系统却一场对局都匹配不起来(任意两名用户积分差不等于K)?
输入格式
  第一行包含两个个整数N和K。
  第二行包含N个整数A1, A2, … AN。

对于30%的数据,1 <= N <= 10
  对于100%的数据,1 <= N <= 100000, 0 <= Ai <= 100000, 0 <= K <= 100000
  
输出格式
  一个整数,代表答案。
  
样例输入
10 0
1 4 2 8 5 7 1 4 2 8

样例输出
6

二、解题思路

1.使用动态规划的方法拆分成小问题,这里使用一个最大是100000的数组,统计不同积分拥有的不同人数
2.当k>0时,把数组分成k个积分相差k的小数组,这样我们通过循环就可以解出各个小数组的最大值,再把k个小数组的最大值加起来,就能得到最终结果。注意当k=0时,我们只需要把拥有相同积分的用户看成是一个整体,再进行遍历就可以了
3.求各个小数组的最大值,需要注意我们求值的原理是不相邻最大值,因为小数组相邻的数正好是相差k的数,我们考虑的就应该是当前的这个数应该可以跟前前个用户同时在线。
4.矛盾点是在第三个数开始的,所以dp[0]=0,dp[1]=loop[1](注意我的代码,len是从1开始的,这么设置的原因是为了能跟循环j对应上,减少不必要的麻烦),dp[2]这里开始就有两种选择了,第一种是让前前个数加上自己的数(dp[2-2]+loop[2]也就是dp[j-2]+loop[j]),第二种是用前个数取代(dp[2-1]也就是dp[i-1]),两种选择取决于哪个值更大,因为如果前前个数加上这个数还比前一个数小,我又不能选择相邻的数,那我就直接用前一个数了,接着循环看看下一个数会不会出现更大的,直至结果。

三、代码实现

import java.util.Scanner;
 
public class Main {
	public static void main(String[] args) {
		Scanner scanner = new Scanner(System.in);
		int count=0;//记录人数
		int n=scanner.nextInt();
		int k=scanner.nextInt();
		int []arr=new int[100001];
		int []dp=new int[100001];
		int []loop=new int[100001];
		for(int i=0;i<n;i++) {
			arr[scanner.nextInt()]++;//把记录积分作为下标,记录人数
		}
		if(k==0) {//如果分差为0的话,这种情况把所有积分有人数的遍历一遍就行
			for(int i=0;i<100001;i++) {
				if(arr[i]!=0) {
					count++;
				}
			}
		}
		else {
			for(int i=0;i<k;i++) {//分成k组相隔为k的数组
				int len=1;
				for(int j=i;j<100000;j+=k) {
					loop[len++]=arr[j];
				}
				dp[0]=0;dp[1]=loop[1];
				for(int j=2;j<len;j++) {//每组进行循环匹配找最大值
					dp[j]=Math.max(dp[j-1], dp[j-2]+loop[j]);
				}
				count+=dp[len-1];
			}
		}
		System.out.println(count);
	}
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>