自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(248)
  • 收藏
  • 关注

原创 LangChain 和 LangGraph 的用途及区别

LangGraph 是一个基于图结构的框架,用于构建复杂的多智能体(Multi-Agent)系统。它通过图(Graph)来定义智能体之间的交互逻辑和控制流,支持非线性、多路径的控制流,更适合复杂的智能体协作场景。例如,在一个需要多个智能体协同工作的复杂任务中,如智能客服系统,LangGraph 可以更好地管理和调度这些智能体。LangChain 是一个用于构建线性任务流程的框架,特别适合处理简单的、基于工具的调用。例如,如果你想构建一个简单的问答系统或文档摘要工具,LangChain 是一个很好的选择。

2025-05-26 10:07:55 184

原创 用有趣方式给小学生讲解LHM原理

其中,( S ) 表示整个3D高斯点云模型,( N ) 是点的数量,( G_i ) 是第 ( i ) 个高斯函数,( \mathbf{x} ) 是空间中的点,( \mathbf{\mu}_i ) 是第 ( i ) 个高斯点的中心位置,( \mathbf{\Sigma}_i ) 是它的形状(就像胖瘦不同的气球),( c_i ) 是它的颜色。LHM是怎么做到的呢?我们可以把SMPL-X骨架参数想象成提线木偶的线,拉动这些“线”,3D小人儿就能摆出不同的姿势,跳舞、做运动,在AR/VR的世界里快乐地玩耍啦!

2025-05-26 09:39:57 374

原创 NeuralRecon技术详解:从单目视频中实现三维重建

TSDF是一种用于三维重建和表面表示的技术。它通过记录每个体素(voxel)到最近表面的距离来表示三维形状。这里的“体素”是三维空间中的一个像素,类似于二维图像中的像素。NeuralRecon是一种强大的三维重建技术,它通过结合深度学习和TSDF方法,实现了从单目视频中实时生成高质量的三维模型。本文详细介绍了NeuralRecon的技术原理、步骤以及如何利用TSDF进行三维重建,并提供了示例代码和GitHub参考链接。希望读者能够通过本文更好地理解和应用NeuralRecon技术。

2025-05-25 20:37:14 584

原创 车道线检测技术详解:原理、代码与开源项目

车道线检测的目标是从道路图像中识别出车道线的位置。这项技术对于自动驾驶车辆的路径规划和导航至关重要。图像预处理:对输入图像进行灰度化、去噪等处理。特征提取:使用深度学习模型(如卷积神经网络)提取图像特征。车道线分割:通过分割网络识别出车道线区域。后处理:对分割结果进行形态学处理、曲线拟合等,以获得更平滑的车道线。

2025-05-25 12:14:12 515

原创 深度解析NL2SQL:从语义理解到工程实践的全链路探索

step# 通过向量检索获取相关表结构@step# 调用大模型生成SQL@step# 执行SQL并返回结果@step# 将结果转换为自然语言NL2SQL不仅是一项技术突破,更是数据民主化的重要里程碑。通过结合大语言模型的语义理解能力与LlamaIndex等开发框架的工程化能力,企业能够以更低成本构建智能数据接口,让数据价值真正触达每一个业务环节。随着技术的不断成熟,NL2SQL将逐步从辅助工具转变为企业数据战略的核心组件,推动“对话即分析”的新一代数据分析范式落地。参考资料。

2025-05-24 22:53:02 914

原创 Vanna.AI:解锁连表查询的新境界

Vanna.AI通过其独特的检索增强技术,为连表查询生成带来了革命性的变化。它不仅提高了数据查询的效率和准确性,还降低了数据交互的门槛,使得更多的用户能够轻松地获取和分析数据。通过本文介绍的使用步骤和代码示例,读者可以快速上手并应用Vanna.AI,提高数据交互的效率和准确性。随着技术的不断发展,Vanna.AI将在更多的领域发挥重要作用,为数据驱动的决策提供强大的支持。

2025-05-24 22:45:03 478

原创 Vanna.AI:用检索增强技术革新SQL查询生成

Vanna.AI通过其独特的检索增强技术,为SQL查询生成带来了革命性的变化。它不仅提高了数据查询的效率和准确性,还降低了数据交互的门槛,使得更多的用户能够轻松地获取和分析数据。通过本文介绍的使用步骤和代码示例,读者可以快速上手并应用Vanna.AI,提高数据交互的效率和准确性。随着技术的不断发展,Vanna.AI将在更多的领域发挥重要作用,为数据驱动的决策提供强大的支持。

2025-05-24 22:32:58 700

原创 点云补全技术深度解析:从原理到实践

在三维视觉领域,点云补全技术扮演着至关重要的角色。它旨在从部分或损坏的点云数据中恢复出完整的三维形状,这对于自动驾驶、机器人导航、文物保护等多个领域都具有重要意义。本文将深入探讨点云补全的原理、关键技术和实际应用示例。

2025-05-24 11:21:16 898

原创 小朋友也能懂的XGBoost原理:用“搭积木”学预测

机器学习就像小朋友学认水果:第一次看到苹果,大人告诉你:“红红的、圆圆的是苹果”;第二次看到橘子,大人说:“黄黄的、扁扁的是橘子”。你不断记住这些“特征”,下次看到新水果时,就能根据“颜色”“形状”猜出它是什么——这就是“学习”的过程。机器学习的目标:让计算机像小朋友一样,通过观察大量“例子”(数据),学会从“特征”(比如颜色、大小)预测“结果”(比如是不是苹果)。这颗西瓜熟了吗?├─ 颜色是深绿吗?│ ├─ 是 → 纹路清晰吗?│ │ ├─ 是 → 熟了!│ │ └─ 否 → 没熟。

2025-05-23 15:13:34 320

原创 阿里云API RAG全流程实战:从模型调用到多模态应用的完整技术链路

阿里云 API RAG 流程通过“模型调用-应用构建-数据管理-多模态拓展”的全链路能力,为企业提供了低成本、高效率的智能问答解决方案。无论是客服系统、智能助手还是知识管理平台,这套流程都能显著提升交互体验和数据利用率。随着大模型技术的不断演进,阿里云将持续优化 RAG 能力,助力企业加速智能化转型。立即体验:访问阿里云百炼控制台,开启您的 RAG 之旅!

2025-05-23 09:17:14 799

原创 百度智能云千帆AppBuilder RAG流程技术文档

本文档旨在详细阐述百度智能云千帆AppBuilder的RAG(Retrieval-Augmented Generation,检索增强生成)流程,包括API对接、知识库维护以及文档资料管理等关键环节。通过本流程,开发者可以高效地构建基于大模型的应用,实现知识问答、文件处理等功能。通过百度智能云千帆AppBuilder的RAG流程,开发者可以高效地构建基于大模型的应用。从API对接的授权、应用创建、知识库配置,到对话管理、文件上传,再到知识库的维护和文档资料管理,整个流程清晰且易于操作。

2025-05-22 16:51:12 989

原创 遗传算法:模拟生物进化解决复杂问题

遗传算法是一种强大的优化工具,适用于各种复杂的优化问题。它通过模拟生物进化的过程,逐步找到最优解。无论是在路径规划、调度问题、参数优化还是设计优化中,遗传算法都能发挥重要作用。希望这些解释和示例能帮助你更好地理解遗传算法的作用和应用场景!如果你有任何问题或需要进一步的解释,请随时留言!

2025-05-22 11:15:05 947

原创 Nginx 强制 HTTPS:提升网站安全性的关键一步

通过上述步骤,你可以在 Nginx 中轻松设置强制 HTTPS,提升网站的安全性和用户体验。强制 HTTPS 不仅是一种最佳实践,也是现代网站不可或缺的安全措施。希望本文能帮助你顺利完成配置,保护你的网站和用户数据安全。如果你在配置过程中遇到任何问题,欢迎在评论区留言,我会尽力为你解答。

2025-05-21 16:32:03 916

原创 使用 Spring AI Alibaba 集成阿里云百炼大模型应用

随着人工智能技术的飞速发展,大模型在各个领域的应用越来越广泛。阿里云百炼大模型提供了强大的语言理解和生成能力,但如何将其高效地集成到实际应用中,一直是开发者关注的焦点。本文将详细介绍如何使用 Spring AI Alibaba 集成阿里云百炼大模型应用,帮助开发者快速上手并实现功能。

2025-05-21 13:21:42 1207

原创 深入解析异步编程:Java NIO、Python `async/await` 与 C# `async/await` 的对比

Java 的 NIO、Python 的和 C# 的都提供了非阻塞 I/O 的支持,通过事件驱动和多路复用提高了程序的性能和资源利用率。尽管它们在编程模型和语言支持上有差异,但它们的核心思想是相似的。Java 的 NIO 更适合需要高性能和细粒度控制的场景,而 Python 的和 C# 的提供了更简洁和易用的编程模型,适合快速开发和维护。

2025-05-21 12:38:31 990

原创 深入解析 OpenManus:开源 AI 智能体框架的技术原理与实践

OpenManus 通过其模块化设计、强大的工具集成能力和灵活的配置机制,成为了一个强大而灵活的智能体框架。它不仅能够处理复杂的多步骤任务,还为开发者提供了极高的扩展性。尽管在某些方面(如任务规划的细腻度)略逊于商业版本的 Manus,但其开源特性允许社区开发者持续优化和扩展。希望本文能帮助你更好地理解 OpenManus 的技术原理和架构设计。如果你对该项目感兴趣,欢迎访问其GitHub 仓库进行进一步探索。同时,也欢迎加入 OpenManus 的社区,与其他开发者一起交流和贡献。

2025-05-20 17:45:42 1106

原创 深入探索百度智能云千帆AppBuilder:从零开始构建AI应用

AppBuilder是百度智能云推出的企业级大模型应用开发管理平台,提供了一系列开箱即用的工具链,包括RAG(检索增强生成)、Agent(智能代理)、工作流、UI Builder等。它支持零代码、低代码和全代码开发方式,旨在降低大模型应用开发的门槛,加速应用落地。通过AppBuilder,无论是零代码、低代码还是全代码开发,开发者都能快速构建出功能强大的AI应用。零代码和低代码方式适合快速原型开发和简单应用,而全代码方式则适合复杂应用的深度定制。

2025-05-20 15:08:38 1123

原创 车道线检测:自动驾驶的“眼睛”

在目标检测中,锚框是预定义的边界框,用于表示可能的目标位置和形状。类似地,在基于锚点的车道线检测中,锚点是预定义的线段,用于表示可能的车道线位置和形状。锚生成:在图像上生成预定义的锚点。这些锚点可以是直线或曲线,具体取决于车道线的形状和方向。通常,会根据数据集的统计信息来设计锚点,以便它们能够覆盖各种可能的车道线形状。锚“移位”/偏差:模型预测锚点的调整,使其与实际车道线对齐。这包括调整锚点的位置、形状和大小,以更好地匹配图像中的车道线。非极大值抑制(NMS)

2025-05-20 10:57:26 836

原创 《DiffPoint训练过程详解:从图像到点云的逐步优化》

数据准备:准备二维图像和对应的三维点云。正向扩散过程:将清晰的点云逐步添加噪声,生成噪声点云。逆向扩散过程的训练:从噪声点云开始,逐步减少噪声,恢复出清晰的点云。特征提取与融合模块的训练:从图像中提取特征,并与点云特征结合,指导点云重建。整体优化与损失计算:通过损失函数评估重建质量,并通过反向传播优化模型。迭代优化:重复上述步骤,逐步提高模型的性能。希望这次的详细解释能帮助你更清晰地理解DiffPoint的训练过程!如果还有任何疑问,欢迎继续提问。

2025-05-19 10:39:46 796

原创 DiffPoint:用扩散模型解锁点云重建的新境界

DiffPoint是一种先进的点云重建技术,它利用扩散模型的强大能力,从单视图或多视图图像中重建出高质量的3D点云。点云,简单来说,是由大量三维空间中的点组成的集合,每个点都包含了其在空间中的位置信息,有时还包含颜色等附加信息。通过点云,我们可以精确地重建出物体或场景的三维结构。DiffPoint作为一种创新的3D点云重建技术,已经在多个方面展示了其独特的优势和巨大潜力。

2025-05-19 10:08:51 921

原创 PointNet++:点云处理的升级版算法

Set Abstraction Layer是PointNet++的核心模块,它负责提取点云的局部特征。采样(Sampling):使用FPS算法从点云中选择关键点。分组(Grouping):以采样点为中心,定义局部区域,并找到每个局部区域内的点。特征提取(Feature Extraction):对每个局部区域,使用PointNet模块提取特征。特征聚合(Feature Aggregation):将所有局部区域的特征聚合到更高层次的特征表示中。

2025-05-18 20:33:41 844

原创 深入探索PointNet:点云处理的革命性算法

"""变换网络(T - Net),用于输入变换和特征变换。"""return xPointNet算法为点云处理提供了一种全新的思路,它直接对点云数据进行操作,避免了传统方法中对点云进行复杂转换的步骤。通过输入变换网络、特征提取层和对称函数,PointNet能够有效地提取点云的全局特征,适用于点云分类和分割等多种任务。本文通过详细的原理介绍和代码示例,帮助读者更好地理解和应用PointNet算法。希望读者能够在实际项目中尝试并进一步探索其潜力。

2025-05-18 19:12:29 696

原创 深入理解变分自编码器(VAE):编码器与解码器的协同魔法

变分自编码器是一种结合了自编码器和概率图模型的深度学习架构。它的目标是通过学习数据的低维潜在表示(Latent Representation),实现对数据的有效压缩和高效生成。与传统的自编码器不同,VAE引入了概率分布的概念,使得潜在空间具有更好的结构和连续性,从而能够生成高质量的新样本。变分自编码器(VAE)作为一种强大的生成模型,通过编码器和解码器的协同工作,实现了数据的有效压缩和高效生成。编码器通过学习数据的潜在分布,将输入数据压缩成一个低维的概率表示;

2025-05-18 09:43:59 698

原创 微积分基本规则及示例解析

例如,\(\frac{d}{dx} \frac{x^2}{x} = \frac{\frac{d}{dx} x^2 \cdot x - x^2 \cdot \frac{d}{dx} x}{x^2} = \frac{2x \cdot x - x^2 \cdot 1}{x^2} = \frac{2x^2 - x^2}{x^2} = 1\)。- 差的极限:\(\lim_{x \to a} (f(x) - g(x)) = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)\)

2025-05-17 22:52:33 454

原创 Ankr:Web3基础设施的革新者

Ankr是一个基于区块链的分布式云计算基础设施平台,旨在通过整合全球闲置的计算资源,为企业和开发者提供高效、安全且低成本的云计算服务。该项目于2017年由Chandler Song、Ryan Fang和Stanley Wu联合创立,他们分别拥有云计算、投资银行和分布式系统设计的背景。Ankr的核心目标是通过去中心化的方式,解决传统云计算的高成本和中心化问题,推动Web3技术的普及和应用。

2025-05-17 13:36:34 943

原创 Stacking超参数调优:网格搜索与随机搜索的实战指南

在Stacking中,基础模型和元模型的超参数对模型性能有很大影响。通过网格搜索或随机搜索,可以有效地对这些超参数进行调优,从而提高Stacking模型的整体性能。网格搜索虽然能够确保找到一个在给定网格中的最优超参数组合,但计算开销较大;随机搜索虽然计算效率高,但可能遗漏最佳参数。在实际应用中,可以根据具体问题的性质和计算资源的限制,选择合适的超参数调优方法。希望本文能帮助你更好地理解和应用Stacking中的超参数调优方法。如果你对Stacking或超参数调优还有其他问题或想法,欢迎随时交流和讨论。

2025-05-17 11:58:09 953

原创 Stacking(堆叠):集成学习中的“超级英雄团队”

在技术层面,Stacking是一种集成学习方法,其核心思想是将多个基础模型的输出作为特征,训练一个元模型来进行最终预测。基础模型训练:选择多个不同的基础模型(可以是决策树、逻辑回归、支持向量机等),在训练数据集上分别训练这些模型。生成元特征:使用基础模型对训练数据集进行预测,得到每个基础模型的预测结果。这些预测结果将作为新的特征(元特征)。元模型训练:使用元特征和原始目标变量训练一个元模型。元模型可以是任何机器学习模型,如线性回归、决策树、随机森林等。最终预测。

2025-05-17 11:33:03 771

原创 混合学习:Bagging与Boosting的深度解析与实践指南

集成学习通过组合多个模型来提高预测性能,已经成为机器学习中一个非常重要的研究方向。Bagging和Boosting是两种经典的集成学习方法,它们在降低方差、提高稳定性、增强泛化能力等方面具有显著优势。

2025-05-17 11:13:16 971

原创 在 Neo4j 中实现向量化存储:从文本到高效语义搜索

向量化存储是一种将文本或其他数据转换为向量形式并存储在数据库中的技术。向量是一种数学表示,可以用于计算相似性、距离等,非常适合用于语义搜索和推荐系统。通过将文本数据转换为向量,我们可以在数据库中高效地进行语义相似性查询,而不仅仅是基于关键词的匹配。通过以上步骤,你可以在 Neo4j 数据库中实现高效的向量化存储和查询。环境配置:设置连接到 Neo4j 的环境变量。数据填充:读取文本数据,生成向量,并存储到 Neo4j 中。创建向量索引:在 Neo4j 中为向量数据创建索引,以便快速查询。查询向量索引。

2025-05-16 16:54:34 847

原创 技术博客:探索LPG与RDF在知识图谱构建中的作用

在知识图谱的构建过程中,选择合适的数据模型是项目成功的关键。本文将深入探讨两种流行的数据模型:LPG(Labeled Property Graph,带标签属性图)和RDF(Resource Description Framework,资源描述框架),并提供实际示例来展示它们在知识图谱构建中的应用。

2025-05-16 16:10:14 353

原创 深入探索 OpenSPG:下一代知识图谱构建与推理框架

OpenSPG 是由蚂蚁集团与 OpenKG 社区联合推出的一款基于SPG(Semantic-enhanced Programmable Graph,语义增强可编程图)框架的知识图谱引擎。它融合了LPG(Labeled Property Graph,带标签属性图)的结构化优势和RDF(Resource Description Framework,资源描述框架)的语义表达能力,旨在解决传统知识图谱技术在工业级应用中的不足。

2025-05-16 15:30:03 1519

原创 Sparse MoE 和 Sparse Attention:谁才是模型优化的“效率王”?

Sparse MoE(稀疏混合专家模型)和Sparse Attention(稀疏注意力)是两种通过稀疏化机制优化模型效率的技术。Sparse MoE通过

2025-05-15 16:54:29 754

原创 深入探索 OpenCV:从实时视频流到图像处理的实战指南

通过本项目,我们实现了一个基于 OpenCV 的实时目标跟踪系统。我们学习了如何初始化跟踪器、选择目标区域、更新跟踪器状态以及绘制跟踪结果。我们还探讨了多目标跟踪和跟踪器重初始化的技术,以提高跟踪系统的鲁棒性和实用性。目标跟踪是计算机视觉中的一个重要应用,它在许多领域都有广泛的应用。通过本项目,你不仅能够掌握 OpenCV 的基本用法,还能深入了解目标跟踪的原理和优化技巧。希望你能够在实际应用中灵活运用这些知识,开发出更多有趣和实用的计算机视觉应用。

2025-05-15 15:42:26 1045

原创 深入解析 CAS-overlay-template:运行原理与架构设计

通过在。

2025-05-13 14:04:56 878

原创 CAS 自定义登录逻辑:集成 MySQL 数据库的完整指南 基于 `cas-overlay-template` 的实现

中,我们需要通过 JDBC 连接到 MySQL 数据库并验证用户凭证。如果你需要进一步扩展功能,例如支持密码加密存储或使用其他数据库,可以在。项目中实现了基于 MySQL 数据库的自定义登录逻辑。如果你有任何问题或建议,欢迎在评论区留言。首先,确保你有一个 MySQL 数据库,并创建一个用户表()用于存储用户名和密码。,输入数据库中存储的用户名和密码(例如。文件中,添加以下配置以注册自定义的。目录下,确保你已经创建了。通过上述步骤,我们成功地在。文件,并注册了自定义的。),验证是否能够成功登录。

2025-05-13 13:55:49 362

原创 自定义 CAS 登录逻辑:基于 `cas-overlay-template` 的实现

CAS(Central Authentication Service)是一个开源的单点登录协议实现,广泛用于企业级身份认证和授权。是一个基于 Gradle 的模板项目,用于快速搭建和定制 CAS 服务器。在 CAS 中,登录逻辑主要由和管理。是认证的核心组件,负责验证用户提供的凭证(如用户名和密码)。通过扩展,我们可以实现自定义的登录逻辑。在cas:authn:handlers:访问,输入自定义的用户名和密码(例如customUser和),验证是否能够成功登录。日志信息。

2025-05-13 13:49:05 927

原创 工业自动化中的信号传递与智能监控:基于Modbus协议的实践案例

在DSPy中,模块是构建AI系统的基本单元。开发者可以通过定义模块的签名来指定模块的输入输出行为。签名中可以包含输入字段和输出字段,每个字段都可以指定类型和描述。在这个例子中,我们定义了一个名为的模块,它的输入是一个句子,输出是情感分类结果和置信度。通过这种方式,开发者可以清晰地定义模块的功能和行为。除了定义模块,DSPy还提供了丰富的模块组合方式。开发者可以通过组合不同的模块来实现复杂的AI功能。例如,我们可以将一个文本分类模块和一个文本生成模块组合起来,实现一个自动回复系统。

2025-05-12 13:07:22 828

原创 使用Comfy UI制作虚拟试衣的详细教程

通过上述步骤,你可以使用Comfy UI和IDM-VTON模型轻松实现虚拟试衣功能。这不仅为消费者提供了更好的购物体验,也为商家节省了成本。希望本文能帮助你更好地理解和应用这项技术。

2025-05-10 11:56:54 668

原创 使用Comfy UI制作虚拟试衣的详细教程

通过上述步骤,你可以使用Comfy UI和IDM-VTON模型轻松实现虚拟试衣功能。这不仅为消费者提供了更好的购物体验,也为商家节省了成本。希望本文能帮助你更好地理解和应用这项技术。

2025-05-10 11:53:54 730

原创 使用Comfy UI制作虚拟试衣的详细教程

在数字艺术和电商领域,虚拟试衣技术正逐渐成为一种趋势。它不仅可以帮助消费者更好地预览服装上身效果,还能为商家节省成本。本文将详细介绍如何使用Comfy UI和IDM-VTON模型实现虚拟试衣功能。我们将从环境准备开始,逐步深入到每个操作细节,确保每个步骤都清晰易懂。通过上述步骤,你可以使用Comfy UI和IDM-VTON模型轻松实现虚拟试衣功能。这不仅为消费者提供了更好的购物体验,也为商家节省了成本。希望本文能帮助你更好地理解和应用这项技术。

2025-05-10 11:51:58 715

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除