小朋友们,今天我们来认识一个超厉害的“数字魔法师”,它叫LHM!LHM就像有一双神奇的手,只要给它一张人物照片,眨眼间就能变出一个会动的3D小人儿,这个小人儿还能跳舞、做鬼脸,是不是特别酷?接下来,我们就一起揭开这个“数字魔法师”的神秘面纱!
一、LHM的“大脑”:多模态Transformer架构
想象一下,LHM有两个超级厉害的“小助手”,一个小助手擅长看3D积木搭成的形状(3D几何特征),另一个小助手擅长看2D图画(2D图像特征)。这两个小助手把看到的信息都告诉LHM的“大脑”,也就是多模态Transformer架构。这个“大脑”特别聪明,它能把3D积木的形状和2D图画的样子结合起来,就像把拼图和积木拼在一起,这样就能更清楚地知道照片里人物的样子啦!
从技术角度来说,多模态Transformer架构利用注意力机制,就像我们看书时会重点关注重要段落一样,它会重点关注照片里服装、面部这些重要的地方,保留服装的几何形状和纹理细节。为了让“大脑”更好地恢复面部细节,LHM还想出了一个好办法,叫头部特征金字塔编码方案,就像给面部信息建了一座有层次的小塔,让细节恢复得更准确。
二、LHM的“画笔”:3D高斯点云
LHM“变”出3D小人儿后,是怎么把它画出来的呢?它用的是一种很特别的“画笔”,叫3D高斯点云。我们可以把3D高斯点云想象成一盒彩色的魔法粉笔,每根粉笔都能画出一个小小的彩色光点。LHM用这些彩色光点一点一点地拼出3D小人儿的样子,而且这些光点还能根据光线变化改变颜色和亮度,就像我们用彩色粉笔在不同光线下画画一样,这样画出来的3D小人儿看起来特别真实!
用数学公式来简单表示,3D高斯点云可以写成:
[
S
=
∑
i
=
1
N
G
i
(
x
;
μ
i
,
Σ
i
,
c
i
)
]
[ S = \sum_{i=1}^{N} G_i(\mathbf{x}; \mathbf{\mu}_i, \mathbf{\Sigma}_i, c_i) ]
[S=i=1∑NGi(x;μi,Σi,ci)]
其中,( S ) 表示整个3D高斯点云模型,( N ) 是点的数量,( G_i ) 是第 ( i ) 个高斯函数,( \mathbf{x} ) 是空间中的点,( \mathbf{\mu}_i ) 是第 ( i ) 个高斯点的中心位置,( \mathbf{\Sigma}_i ) 是它的形状(就像胖瘦不同的气球),( c_i ) 是它的颜色。通过调整这些参数,就能画出不同样子的3D模型啦!
三、LHM的“学习秘籍”:自监督学习
LHM这么厉害,它是怎么学会这些魔法的呢?原来它有一本“学习秘籍”,叫自监督学习。我们可以把自监督学习想象成LHM自己玩“找不同”的游戏。它有一大堆视频,在这些视频里自己找规律,比如发现“这个人举起左手的时候,身体会稍微倾斜”,通过不断玩这个“找不同”的游戏,LHM就越来越聪明,不需要别人告诉它答案,自己就能学会怎么从照片变出会动的3D小人儿。
四、LHM的“表演舞台”:实时动画
LHM变出来的3D小人儿可不是一动不动的,它还能在“舞台”上表演呢!LHM是怎么做到的呢?它用了一种叫SMPL-X骨架参数的东西,就像给3D小人儿装上了可以活动的关节。我们可以把SMPL-X骨架参数想象成提线木偶的线,拉动这些“线”,3D小人儿就能摆出不同的姿势,跳舞、做运动,在AR/VR的世界里快乐地玩耍啦!
五、LHM的神奇应用
LHM这么厉害,它都能在哪些地方大显身手呢?在虚拟现实游戏里,我们可以用LHM快速生成游戏角色,让游戏变得更有趣;在影视制作中,它能帮助制作出逼真的特效角色,让电影里的画面更精彩。未来,LHM还会在更多地方发挥作用,给我们带来更多惊喜!
小朋友们,现在你们是不是觉得LHM这个“数字魔法师”特别有趣?希望你们以后也能像LHM一样,不断学习新知识,探索科技的奥秘!
github地址:LHMgithub地址。