蓝桥杯算法训练之素因子去重

算法训练 素因子去重

问题描述
  给定一个正整数n,求一个正整数p,满足p仅包含n的所有素因子,且每个素因子的次数不大于1
输入格式
  一个整数,表示n
输出格式
  输出一行,包含一个整数p。
样例输入
1000
样例输出
10
数据规模和约定
  n<=10^12
  样例解释:n=1000=2^353,p=2*5=10
。。。。。。。。。。。。。。分割线。。。。。。。。。。。。。。。。
其实一开始觉得这道题挺简单的,因为题目很短,结果细想之后发现好像有点意思,于是就上网查了一下,果然它的解法虽然很简单,但是觉得思路很棒就顺手写下来了,大家可以参考一下
题解如下:

import java.util.Scanner;
 
public class Main {
 
	public static void main(String[] args) {
		Scanner sc= new Scanner(System.in);
		long x =sc.nextLong();
		
		long ans = 1;
		for(int i=2;i<=x;i++) {
			
			if(x%i==0) {
				ans *= i;
			}
			while(x%i==0) { // 思路精彩之处在于这里
				x /=i;
			}
			 
		}
		System.out.println(ans);
		sc.close(); 
	}
 
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值