ubuntu下lintel的安装配置

现在深度学习火热,而其又是基于数据驱动的一种机器学习;做计算机视觉的免不了和图片、视频打交道,频繁的从磁盘中读取图片数据是比较耗时的,而且基于视频的深度学习更是麻烦,需要先将视频裁剪成帧,在送进网络训练,那么有没有现成的接口可以让程序直接快速的读取视频,并裁剪成帧!答案是:有的。即lintel。

lintel是能用于解码视频的python模块,返回视频中所有帧的字节数组,其使用的ffmpeg的c语言接口。

在正式安装lintel之前,我们需要安装合适的ffmpeg版本,建议安装最新版本的,可以从http://ffmpeg.org/download.html#release下载源码;

下载完后会在下载的目录下有个FFmpeg文件夹,执行:

cd FFmpeg

然后再执行:

./configure --enable-shared --enable-gpl --enable-pic --enable-runtime-cpudetect --cc="gcc -fPIC" --prefix=install_path

默认的路径为/usr/local/,当然也可以通过参数--prefix指定安装路径,后面配置环境变量的时候会用到。

然后:

make -j$(nproc)  && make install      其中nproc为cpu核数,如果当前已有程序在占用cpu的话,可以设置一个合适的数。

接下,配置环境变量:

打开home目录下的.bashrc文件,在末尾添加:

export ffmpegpath=install_path/ffmpeg export PATH=${ffmpegpath}/bin${PATH:+:${PATH}} export LD_LIBRARY_PATH=${ffmpegpath}/lib${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}} export CPATH=${ffmpegpath}/include${CPATH:+:${CPATH}} export LIBRARY_PATH=${ffmpegpath}/lib${LIBRARY_PATH:+:${LIBRARY_PATH}}
 

更新配置文件:

source ~/.bashrc

接下还要配置系统的环境变量:

sudo vi etc/ld.so.conf    如果没有这个文件,则新建一个

添加

include /etc/ld.so.conf.d/*.conf

install_path/lib  

/usr/local/lib

然后执行:

sudo /sbin/ldconfig   使配置生效

完成上述预备工作后,就完成了一大半了。

接下来,从官方下载lintel的源码,https://github.com/dukebw/lintel

git clone https://github.com/dukebw/lintel.git
cd lintel
pip3 install -e ./

在终端打开python3,

import lintel

如果没报错,则证明安装成功。

更多信息可以参考该项目主页:https://github.com/dukebw/lintel

 

 

 

参考资料:

https://github.com/dukebw/lintel

https://blog.csdn.net/gukedream/article/details/89602163

 

 

 

 

python+opencv简谱识别音频生成系统源码含GUI界面+详细运行教程+数据 一、项目简介 提取简谱中的音乐信息,依据识别到的信息生成midi文件。 Extract music information from musical scores and generate a midi file according to it. 二、项目运行环境 python=3.11.1 第三方库依赖 opencv-python=4.7.0.68 numpy=1.24.1 可以使用命令 pip install -r requirements.txt 来安装所需的第三方库。 三、项目运行步骤 3.1 命令行运行 运行main.py。 输入简谱路径:支持图片或文件夹,相对路径或绝对路径都可以。 输入简谱主音:它通常在第一页的左上角“1=”之后。 输入简谱速度:即每分钟拍数,同在左上角。 选择是否输出程序中间提示信息:请输入Y或N(不区分大小写,下同)。 选择匹配精度:请输入L或M或H,对应低/中/高精度,一般而言输入L即可。 选择使用的线程数:一般与CPU核数相同即可。虽然python的线程不是真正的多线程,但仍能起到加速作用。 估算字符上下间距:这与简谱中符号的密集程度有关,一般来说纵向符号越稀疏,这个值需要设置得越大,范围通常在1.0-2.5。 二值化算法:使用全局阈值则跳过该选项即可,或者也可输入OTSU、采用大津二值化算法。 设置全局阈值:如果上面选择全局阈值则需要手动设置全局阈值,对于.\test.txt中所提样例,使用全局阈值并在后面设置为160即可。 手动调整中间结果:若输入Y/y,则在识别简谱后会暂停代码,并生成一份txt文件,在其中展示识别结果,此时用户可以通过修改这份txt文件来更正识别结果。 如果选择文件夹的话,还可以选择所选文件夹中不需要识别的文件以排除干扰
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值