java求斐波那契数列的第n个值: 1、1、2、3、5、8、13、21、34

斐波那契数列(Fibonacci sequence),又称黄金分割数列、因数学家莱昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:1、1、2、3、5、8、13、21、34、……在数学上,斐波那契数列以如下被以递推的方法定义:F(1)=1,F(2)=1, F(n)=F(n - 1)+F(n - 2)(≥ 3,∈ N*)

1.1 使用递归方法

/**
     * 使用递归方法求第n个斐波那契数列的值
     *
     * @param n 第几个数
     * @return 结果
     */
    private Integer calNumberByRecursion(Integer n) {
        if (n == 1 || n == 2) {
            return 1;
        }
        return calNumberByRecursion(n - 1) + calNumberByRecursion(n - 2);
    }

1.2 测试及结果

 @Test
    public void test() {
        // Integer[] array = { 1, 1, 2, 3, 5, 8, 13, 21 };

        int i = 5;

        log.info("递归 - 第 {} 个下标的值:{}", i, calNumberByRecursion(i)); 
    }

1.3 分析: 代码简单,时间复杂度O(2^n),空间复杂度O(n); 非常耗费时间!!!

2.1 使用穷举法

/**
     * 数组 - 使用穷举方法求第n个斐波那契数列的值
     *
     * @param n 第几个数
     * @return 结果
     */
    private Integer calNumberByArray(Integer n) {
        Integer[] array = new Integer[n];
        array[0] = 1;
        array[1] = 1;
        for (int i = 2; i < n; i++) {
            array[i] = array[i - 1] + array[i - 2];
        }
        log.info("calNumberByArray - 长度为{}的斐波那契数列 : {}", n, StringUtils.join(array, ","));
        return array[n - 1];
    }

    /**
     * 集合 - 使用穷举方法求第n个斐波那契数列的值
     *
     * @param n 第几个数
     * @return 结果
     */
    private Integer calNumberByList(Integer n) {
        ArrayList<Integer> list = new ArrayList<>(n);
        list.add(1);
        list.add(1);
        for (int i = 0; i < n - 2; i++) {
            list.add(list.get(i) + list.get(i + 1));
        }
        log.info("calNumberByList - 长度为{}的斐波那契数列 : {}", n, JSON.toJSON(list));
        return list.get(n - 1);
    }

2.2 测试及结果

@Test
    public void test() {
        // Integer[] array = { 1, 1, 2, 3, 5, 8, 13, 21 };

        int i = 5; 

        log.info("穷举 - 数组 - 第 {} 个下标的值:{}", i, calNumberByArray(i));

        log.info("穷举 - 集合 - 第 {} 个下标的值:{}", i, calNumberByList(i));
    }

2.3 分析: 时间复杂度:O(1),空间复杂度O(n)

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页