算法练习 Day27 | LeetCode 39,40,131

文章讲述了在LeetCode中的两个问题,39.组合总和和40.组合总和II,涉及使用回溯算法寻找目标和的整数组合,以及131.分割回文串,通过回溯和双指针法确定字符串分割成回文子串的方案。
摘要由CSDN通过智能技术生成

LeetCode 39 :39.组合总和

题目描述:

给你一个 无重复元素 的整数数组 candidates 和一个目标整数 target ,找出 candidates 中可以使数字和为目标数 target 的 所有 不同组合 ,并以列表形式返回。你可以按 任意顺序 返回这些组合。

candidates 中的 同一个 数字可以 无限制重复被选取 。如果至少一个数字的被选数量不同,则两种组合是不同的。 

对于给定的输入,保证和为 target 的不同组合数少于 150 个。

示例 1:

输入:candidates = [2,3,6,7], target = 7
输出:[[2,2,3],[7]]
解释:
2 和 3 可以形成一组候选,2 + 2 + 3 = 7 。注意 2 可以使用多次。
7 也是一个候选, 7 = 7 。
仅有这两种组合。

解题思路:

class Solution {
    private List<List<Integer>> result = new ArrayList();
    private LinkedList<Integer> path = new LinkedList();
    int sum = 0;
    public List<List<Integer>> combinationSum(int[] candidates, int target) {
        backtracking(candidates, target, 0);
        return result;
    }

    public void backtracking(int[] candidates, int target, int startIndex){
        //终止条件
        if(sum > target){
            return;
        }
        if(sum == target) {
            result.add(new ArrayList(path));
            return;
        }
        for(int i = startIndex;i<candidates.length;i++){
            sum += candidates[i];
            path.add(candidates[i]);
            //注意此处是i而不是startIndex
            backtracking(candidates, target, i);
            sum -= candidates[i];
            path.removeLast();
        }
    }
}

LeetCode 40:40. 组合总和 II

题目描述:

给定一个候选人编号的集合 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。

candidates 中的每个数字在每个组合中只能使用 一次 。

注意:解集不能包含重复的组合。 

示例 1:

输入: candidates = [10,1,2,7,6,1,5], target = 8,
输出:
[
[1,1,6],
[1,2,5],
[1,7],
[2,6]
]

LeetCode 40:40. 组合总和 II

题目描述:

给定一个候选人编号的集合 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。

candidates 中的每个数字在每个组合中只能使用 一次 。

注意:解集不能包含重复的组合。 

示例 1:

输入: candidates = [10,1,2,7,6,1,5], target = 8,
输出:
[
[1,1,6],
[1,2,5],
[1,7],
[2,6]
]

解题思路:

回溯三要素:

(1)回溯参数及返回值

List<List<Integer>> result = new ArrayList();
LinkedList<Integer> path = new LinkedList();
Integer sum = 0;
//用来存放树层中该值是否使用过
boolean[] used = new boolean[candidates.length];
//先填充false
Arrays.fill(used, false);

public void backtracking(int[] candidates, int target, List<List<Integer>> result, LinkedList<Integer> path, boolean[] used, Integer sum, Integer startIndex) {

(2)终止条件


        if(sum > target) {
            return;
        }
        if(sum == target) {
            result.add(new ArrayList(path));
            return;
        }

(3)单层逻辑

for (int i= startIndex;i<candidates.length;i++) {
            //树层去重
            if(i>0 && candidates[i] == candidates[i-1] && !used[i-1]) {
                continue;
            }
            path.add(candidates[i]);
            sum += candidates[i];
            used[i] = true;
            backtracking(candidates, target, result, path, used, sum, i+1);
            sum -= candidates[i];
            used[i] = false;
            path.removeLast();
        }

关键点:

(1)先排序,如果candidates中i位置和i-1位置的数据相同,则说明重复了

(2)再对树层去重,used[i - 1] == false,说明同一树层candidates[i-1]使用过

完整代码:

class Solution {
    public List<List<Integer>> combinationSum2(int[] candidates, int target) {
        List<List<Integer>> result = new ArrayList();
        LinkedList<Integer> path = new LinkedList();
        Integer sum = 0;
        //用来存放树层中该值是否使用过
        boolean[] used = new boolean[candidates.length];
        //先填充false
        Arrays.fill(used, false);
        //对candidates先排序,这样才能对i与i-1位置上的数据进行比较,看是否重复
        Arrays.sort(candidates);
        backtracking(candidates, target, result, path, used, sum, 0);
        return result;
    }

    public void backtracking(int[] candidates, int target, List<List<Integer>> result, LinkedList<Integer> path, boolean[] used, Integer sum, Integer startIndex) {
        //终止条件
        if(sum > target) {
            return;
        }
        if(sum == target) {
            result.add(new ArrayList(path));
            return;
        }
        for (int i= startIndex;i<candidates.length;i++) {
            //树层去重
            if(i>0 && candidates[i] == candidates[i-1] && !used[i-1]) {
                continue;
            }
            path.add(candidates[i]);
            sum += candidates[i];
            used[i] = true;
            backtracking(candidates, target, result, path, used, sum, i+1);
            sum -= candidates[i];
            used[i] = false;
            path.removeLast();
        }
    }
}

具体可参考:代码随想录

 

LeetCode 131:131.分割回文串

题目描述:

给你一个字符串 s,请你将 s 分割成一些子串,使每个子串都是 回文串 。返回 s 所有可能的分割方案。

回文串 是正着读和反着读都一样的字符串。

示例 1:

输入:s = "aab"
输出:[["a","a","b"],["aa","b"]]

解题思路:

回溯三要素:

(1)参数及返回值

  List<List<String>> result = new ArrayList<>();
  LinkedList<String> path = new LinkedList<>();
  public void backtracking(String s, int startIndex) {

(2)终止条件

//终止条件 - 如果起始位置大于s的长度
if (startIndex >= s.length()) {
    result.add(new ArrayList<>(path));
    return;
 }

(3)单层循环逻辑

for (int i = startIndex;i< s.length();i++) {
            if (isPalindrome(s, startIndex, i)) {
                path.add(s.substring(startIndex,i+1));
            } else {
                continue;
            }
            backtracking(s, i+1);
            path.removeLast();
        }

关键点:

(1)如何切割

startIndex就是切割线,字符串中[startIndex,i]位置上的子串就是切割后的子串

s.substring(startIndex,i+1)

(2)判断回文子串

双指针法判断回文

public boolean isPalindrome(String s, int start, int end) {
        for (int i = start, j = end; i < j; i++, j--) {
            if (s.charAt(i) != s.charAt(j)) {
                return false;
            }
        }
        return true;
    }

 

完整代码:

class Solution {
    List<List<String>> result = new ArrayList<>();
    LinkedList<String> path = new LinkedList<>();
    public List<List<String>> partition(String s) {
        backtracking(s, 0);
        return result;
    }
     public void backtracking(String s, int startIndex) {
        //终止条件 - 如果起始位置大于s的长度
        if (startIndex >= s.length()) {
            result.add(new ArrayList<>(path));
            return;
        }
        for (int i = startIndex;i< s.length();i++) {
            if (isPalindrome(s, startIndex, i)) {
                path.add(s.substring(startIndex,i+1));
            } else {
                continue;
            }
            backtracking(s, i+1);
            path.removeLast();
        }
    }

    /**
     * 判断是否是回文字符串
     * @param s
     * @param start
     * @param end
     * @return
     */
    public boolean isPalindrome(String s, int start, int end) {
        for (int i = start, j = end; i < j; i++, j--) {
            if (s.charAt(i) != s.charAt(j)) {
                return false;
            }
        }
        return true;
    }
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值