Python自动化:轻松解决Excel表格差异对比难题,告别手工核对的烦恼!

引言
在日常工作中,数据核对是一项既繁琐又容易出错的任务。尤其是对于像小李这样的库存管理人员来说,面对海量的库存数据,如何快速准确地找出两个表格之间的差异,是一个让人头疼的问题。今天,我们就来用Python解决这个难题,让数据核对变得轻松又高效!

图片

图片

小李的烦恼
小李在一家传统渔具公司负责库存管理工作。最近是渔具销售旺季,公司决定清理库存,需要他整理库存表格。然而,当他将库存系统导出的表格和财务系统导出的上月盘点表格进行对比时,发现两者的数量怎么也对不上。小李尝试用Excel的Vlookup函数来解决,但很快发现,Vlookup只能解决一部分问题,对于那些在财务表里而不在系统表里的差异,以及数量不一致的情况,Vlookup就无能为力了。小李陷入了苦恼之中,于是他在我们的微信公众号后台留言,询问我们有没有更好的方法。

图片

Python解决方案
为了解决这一问题,我们可以使用Python的Pandas库来自动化对比两个Excel表格的内容。以下是详细的步骤和代码示例:

  1. 读取两个工作表
    首先,我们需要读取库存系统导出的表格和财务系统导出的表格。这里我们用Pandas的read_excel函数来读取表格,并指定需要读取的列和表头。复制
import pandas as pd

# 读取两个工作表
df_fishing = pd.read_excel(
    "鱼竿库存.xlsx", sheet_name="鱼竿", header=1, usecols=["存货","库存剩余"])
df_fishing.columns =["存货编码","库存剩余"]
df_center = pd.read_excel(
    "鱼竿库存.xlsx", sheet_name="中心库", usecols=[0,1,2,3])
df_center.columns =['存货编码',"_","_","库存剩余"]

2. 清理空值并去重
在实际工作中,表格中可能会存在一些空值或重复的数据,这些数据会影响我们的对比结果。因此,我们需要对数据进行清洗,去掉空值和重复项。

# 清理空值并去重
df_fishing = df_fishing.dropna(subset=["存货编码"]).drop_duplicates("存货编码")
df_center = df_center.dropna(subset=["存货编码"]).drop_duplicates("存货编码")

3. 合并两个表格
接下来,我们需要将两个表格合并在一起。这里我们用Pandas的merge函数,以“存货编码”为键进行外连接,并添加一个_merge列来标记每行数据的来源。

# 合并两个表格
merged = pd.merge(df_fishing, df_center, on="存货编码",
                  how="outer", indicator=True)

4. 分类差异类型
现在,我们已经将两个表格合并在一起了,接下来需要对差异类型进行分类。我们定义一个函数classify_diff,根据_merge列的值和库存数量的对比结果,将差异类型分为“仅鱼竿表存在”、“仅中心库存在”、“数量不一致”和“一致”四种。

# 分类差异类型
defclassify_diff(row):
    if row["_merge"]=="left_only":
        return"仅鱼竿表存在"
    elif row["_merge"]=="right_only":
        return"仅中心库存在"
    elif row["库存剩余_x"]!= row["库存剩余_y"]:
        return"数量不一致"
    else:
        return"一致"

merged["差异类型"]= merged.apply(classify_diff, axis=1)

5. 筛选出所有差异项
最后,我们将所有差异项筛选出来,并将结果保存到一个新的Excel文件中。复制

# 筛选出所有差异项
diff = merged[merged["差异类型"] != "一致"]
# 输出结果
diff_re = diff[["存货编码", "库存剩余_x", "库存剩余_y", "差异类型"]]
diff_re.columns = ["存货编码", "库存剩余_鱼竿", "库存剩余_中心库", "差异类型"]
diff_re.to_excel("鱼竿差异.xlsx")

图片

总结
通过以上步骤,我们成功地用Python解决了小李的库存差异问题。Python的强大之处在于,它能够快速地处理大量数据,并且可以灵活地对数据进行各种操作。相比传统的手工核对和Excel函数,Python不仅效率更高,而且准确率也更高。希望这篇文章能够帮助到像小李一样在工作中遇到类似问题的朋友们。如果你对Python自动化感兴趣,或者在工作中遇到了其他技术难题,欢迎关注我们的微信公众号,我们将为你带来更多实用的技术分享!

加入我们的技术社区:更多办公难题的解决之道

我们还有一些有趣的办公自动化案例。比如有一位在我们社区里的小伙伴问有没有办法批量对重要文件进行加密。我们很快为他编写了一段Python代码,利用 cryptography 库,轻松实现了批量文件加密的功能,原本可能需要手动操作几个小时甚至几天的工作,一下子就几秒钟搞定了。

我们有一个专门的技术社区群,在这个群里有很多像这样热心的技术大佬,大家分享着各种实用的Python自动化办公代码和技巧。如果你也想让自己的办公变得更加轻松高效,欢迎加入我们的社区群,和其他打工人一起探索Python自动化办公的奇妙世界。

图片

图片

图片

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值