深度学习
浩浩啊啊
Young,go wandering!
展开
-
深度学习-K近邻与交叉验证
K近邻与交叉验证 根据距离的不同,判断绿色点的归属 简单计算:逐像素点相减 最后的结果有点不太好,这时候我们就需要进行 这是最近邻的一些代码 如何选择最好的参数: 交叉验证: 这样的想法是错误的,因为测试数据只能最后用 [1,2,3,4]------>5 [1,2,3,5]------>4 [1,2,4,5]------>3 [1,3,4,5]------>2 [2,3,4,5]------>1 (1+2+3+4+5)/5 交叉验证的是训练集,验证的是一个参数 先原创 2022-05-14 10:59:16 · 450 阅读 · 0 评论 -
Jupyter Notebook快捷键
H:查看所有快捷键。 S:保存当前 Notebook 内容。 P:调出 Notebook 命令栏。 B:在当前单元格下方新建空白单元格。 M:将单元格格式转换为 Markdown。 Y:将单元格格式转换为 Code。 连续按 D+D:删除当前单元格。(慎用,推荐使用 X 剪切单元格代替,因为其可以起到删除效果,且删错了还可以粘贴回来) 连续按 I+I+I:强制中止内核(当某个单元格执行时间较长或卡住时,可以强行中止,中止后前序单元格状态依旧保留,非常好用。) Shift + Enter:运行当前单元格内容.原创 2021-10-21 16:49:38 · 135 阅读 · 0 评论 -
反向传播算法
神经网络 **反向传播第一层代码 import numpy as np class FullyConnect: def _init_(self,l_x,l_y): self.weights = np.random.randn(l_y,l_x) self.bias =np.random.randn(l) def forward(self,x): self.x=x self.y=np.dot(self.weight原创 2021-10-20 17:01:18 · 85 阅读 · 0 评论