自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(2)
  • 收藏
  • 关注

原创 线性回归中的过拟合与欠拟合

线性回归中的过拟合与欠拟合一、模型为什么预测不准1.1欠拟合1.1.1 定义1.1.2 原因1.1.3 解决办法1.2 过拟合1.2.1 定义1.2.2 原因1.2.3 解决办法二、欠拟合2.1 一个欠拟合的例子2.2 使用多项式扩展解决欠拟合的问题2.2.1 多项式扩展的原理2.2.2 sklearn多项式扩展解决欠拟合问题(1)多项式扩展的简单使用(2)多项式扩展提升拟合程度(3)多项式扩展的结果分析a.模型解释变量的阈值分析b.多项式扩展阶数的分析2.3 多项式扩展的总结三、过拟合3.1 一个过拟合的

2020-12-22 13:51:56 2404

原创 一文读懂多元线性回归

一文读懂多元线性回归一、什么是线性回归模型1.1模型1.2线性1.3回归二、如何建立线性回归模型2.1寻找yyy和xxx2.2确定模型参数2.2.1 拟合的角度什么是拟合最小二乘法拟合线性回归模型损失函数的向量表示2.2.2 统计的角度什么是似然估计模型的极大似然等价于误差的极大似然2.2.3 公式解四、建模过程四、模型有效性分析的扩展4.1.残差分析4.2统计分析三、案例3.1 波士顿房价预测一、什么是线性回归模型1.1模型$ h_\theta = \theta_0 + \theta_{1}x_1+

2020-12-11 09:22:25 1159

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除