最优频带分配方案

最优频带分配问题

设两个发送器分别具有 P 1 P_1 P1 P 2 P_2 P2的功率,分别使用两个不相交的频带带宽 W 1 W_1 W1 W 2 W_2 W2,,其中 W 1 + W 2 = W W_1+W_2=W W1+W2=W(总带宽),试计算最优频带分配方案,并画出该信道的容量区域,进一步讨论频分多址(frequency-division multiplexing)系统的最优频带分配方案。

![在这里插入图片描述](https://img-blog.csdnimg.cn/20190630195240279.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MTYwODMyOA==,size_16,color_FFFFFF,t_70)

最优频带分配问题解决方案

利用单用户的带宽有限信道的容量公式,下面的码率是可达的。
R 1 ≤ W 1 log ⁡ ( 1 + P 1 N W 1 )                                                  ( 1 ) R 2 ≤ W 2 log ⁡ ( 1 + P 2 N W 2 )                                                ( 2 ) \begin{array}{l} {R_1} \le {W_1}\log (1 + \frac{{{P_1}}}{{N{W_1}}})\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(1)\\ {R_2} \le {W_2}\log (1 + \frac{{{P_2}}}{{N{W_2}}})\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(2)\\ \end{array} R1W1log(1+NW1P1)(1)R2W2log(1+NW2P2)(2)
满足条件
W 1 + W 2 = W = c o n s t P 1 + P 2 = P = c o n s t \begin{array}{l} {W_1} + {W_2} = W = const\\ {P_1} + {P_2} = P = const\\ \end{array} W1+W2=W=constP1+P2=P=const

R 1 + R 2 ≤ W 1 log ⁡ ( 1 + P 1 N W 1 ) + W 2 log ⁡ ( 1 + P 2 N W 2 )                          ( ∗ ) {R_1}{\rm{ + }}{R_2} \le {W_1}\log (1 + \frac{{{P_1}}}{{N{W_1}}}) + {W_2}\log (1 + \frac{{{P_2}}}{{N{W_2}}})\;\;\;\;\;\;\;\;\;\;\;\;(*) R1+R2W1log(1+NW1P1)+W2log(1+NW2P2)()
下面证明上面(*)式右边的码率可达,并给出等号成立的条件。
首先从物理直观上来看,由于 R 1 R_1 R1 R 2 R_2 R2分别满足(1)式和(2)式,这两个不等式的右边分别是它们的理论可达码率,因此它们的加和一定小于各自的理论可达码率的加和。

但是,这只是直观上比较粗糙的理解,那么更严谨的问题在于: R 1 R_1 R1 R 2 R_2 R2的理论可达码率是不是就是各自的理论可达码率的加和呢?换句话说,它们的最大值能不能同时取到?如果可以,那么什么时候同时取到,等号成立的条件是什么?

画出信道容量区域示意图,大致的趋势是实际的信道容量(曲线部分)小于等于理论最大值(折线部分),与横坐标的交点表示信道的全部功率用来传输用户1的信息( R 2 = 0 R_{2}=0 R2=0),与纵坐标的交点表示信道的全部功率用来传输用户2的信息( R 1 = 0 R_1=0 R1=0),在这两个点处显然曲线部分与折线部分的取值相等。
命题转化为证明:当 R 1 R_1 R1>0且 R 2 R_2 R2>0时,实际的信道容量(曲线部分)与理论最大值(折线部分)有且只有一个交点,且该交点对应的频带分配方案为
W 1 = P 1 P 1 + P 2 W , W 2 = P 2 P 1 + P 2 W                      ( 4 ) {W_1} = \frac{{{P_1}}}{{{P_1} + {P_2}}}W,{W_2} = \frac{{{P_2}}}{{{P_1} + {P_2}}}W\;\;\;\;\;\;\;\;\;\;(4) W1=P1+P2P1W,W2=P1+P2P2W(4)
首先证明存在性,即:当 R 1 R_1 R1 R 2 R_2 R2 满足(4)式时,(3)式等号成立。
R 1 max ⁡ = W 1 log ⁡ ( 1 + P 1 N W 1 ) = P 1 P 1 + P 2 W log ⁡ ( 1 + P 1 N P 1 P 1 + P 2 W ) = P 1 P 1 + P 2 W log ⁡ ( 1 + P 1 + P 2 N W ) R 2 max ⁡ = W 2 log ⁡ ( 1 + P 2 N W 2 ) = P 2 P 1 + P 2 W log ⁡ ( 1 + P 2 N P 2 P 1 + P 2 W ) = P 2 P 1 + P 2 W log ⁡ ( 1 + P 1 + P 2 N W ) ( R 1 + R 2 ) max ⁡ = R 1 max ⁡ + R 2 max ⁡ = W log ⁡ ( 1 + P 1 + P 2 N W ) \begin{array}{l} {R_{1\max }} = {W_1}\log (1 + \frac{{{P_1}}}{{N{W_1}}}) = \frac{{{P_1}}}{{{P_1} + {P_2}}}W\log (1 + \frac{{{P_1}}}{{N\frac{{{P_1}}}{{{P_1} + {P_2}}}W}}) = \frac{{{P_1}}}{{{P_1} + {P_2}}}W\log (1 + \frac{{{P_1} + {P_2}}}{{NW}})\\ {R_{2\max }} = {W_2}\log (1 + \frac{{{P_2}}}{{N{W_2}}}) = \frac{{{P_2}}}{{{P_1} + {P_2}}}W\log (1 + \frac{{{P_2}}}{{N\frac{{{P_2}}}{{{P_1} + {P_2}}}W}}) = \frac{{{P_2}}}{{{P_1} + {P_2}}}W\log (1 + \frac{{{P_1} + {P_2}}}{{NW}})\\ {({R_1} + {R_2})_{\max }} = {R_{1\max }} + {R_{2\max }} = W\log (1 + \frac{{{P_1} + {P_2}}}{{NW}})\\ \end{array} R1max=W1log(1+NW1P1)=P1+P2P1Wlog(1+NP1+P2P1WP1)=P1+P2P1Wlog(1+NWP1+P2)R2max=W2log(1+NW2P2)=P1+P2P2Wlog(1+NP1+P2P2WP2)=P1+P2P2Wlog(1+NWP1+P2)(R1+R2)max=R1max+R2max=Wlog(1+NWP1+P2)
再证明唯一性,即:实际的信道容量(曲线部分)与理论最大值(折线部分)有交点,而且只能有一个。
观察码率表达式
R 1 ≤ W 1 log ⁡ ( 1 + P 1 N W 1 ) R 2 ≤ W 2 log ⁡ ( 1 + P 2 N W 2 ) \begin{array}{l} {R_1} \le {W_1}\log (1 + \frac{{{P_1}}}{{N{W_1}}})\\ {R_2} \le {W_2}\log (1 + \frac{{{P_2}}}{{N{W_2}}})\\ \end{array} R1W1log(1+NW1P1)R2W2log(1+NW2P2)
R 1 + R 2 R_1+R_2 R1+R2的理论最大值可以写成
R 1 + R 2 ≤ W 1 log ⁡ ( 1 + P 1 N W 1 ) + ( W − W 1 ) log ⁡ ( 1 + P − P 1 N ( W − W 1 ) ) {R_1}{\rm{ + }}{R_2} \le {W_1}\log (1 + \frac{{{P_1}}}{{N{W_1}}}) + (W - {W_1})\log (1 + \frac{{P - {P_1}}}{{N(W - {W_1})}}) R1+R2W1log(1+NW1P1)+(WW1)log(1+N(WW1)PP1)
实际上,不等式右边的理论可达码率为凹函数,证明如下:
设 P i N = k i &gt; 0 , 构 造 f ( x i ) = x i log ⁡ ( 1 + k i x i ) f ′ ( x i ) = log ⁡ ( 1 + k i x i ) + x i ⋅ ( − k i x i 2 ) 1 1 + k i x i = log ⁡ ( 1 + k i x i ) − k i x i + k i f ′ ′ ( x i ) = 1 1 + k i x i ⋅ ( − k i x i 2 ) + k i ( x i + k i ) 2 = k i ( 1 x i 2 + k i x i + k i x i + k i 2 − 1 x i 2 + k i x i ) &lt; 0 ∴ f ( x ) 为 凹 函 数 。 \begin{array}{l} 设\frac{{{P_i}}}{N} = {k_i} &gt; 0,构造f({x_i}) = {x_i}\log (1 + \frac{{{k_i}}}{{{x_i}}})\\ f&#x27;({x_i}) = \log (1 + \frac{{{k_i}}}{{{x_i}}}) + {x_i} \cdot ( - \frac{{{k_i}}}{{{x_i}^2}})\frac{1}{{1 + \frac{{{k_i}}}{{{x_i}}}}} = \log (1 + \frac{{{k_i}}}{{{x_i}}}) - \frac{{{k_i}}}{{{x_i} + {k_i}}}\\ f&#x27;&#x27;({x_i}) = \frac{1}{{1 + \frac{{{k_i}}}{{{x_i}}}}} \cdot ( - \frac{{{k_i}}}{{{x_i}^2}}) + \frac{{{k_i}}}{{{{({x_i} + {k_i})}^2}}} = {k_i}(\frac{1}{{{x_i}^2 + {k_i}{x_i} + {k_i}{x_i} + {k_i}^2}} - \frac{1}{{{x_i}^2 + {k_i}{x_i}}}) &lt; 0\\ \therefore f\left( x \right)为凹函数。 \end{array} NPi=ki>0,f(xi)=xilog(1+xiki)f(xi)=log(1+xiki)+xi(xi2ki)1+xiki1=log(1+xiki)xi+kikif(xi)=1+xiki1(xi2ki)+(xi+ki)2ki=ki(xi2+kixi+kixi+ki21xi2+kixi1)<0f(x)
令 g ( x ) = ( x 0 − x ) l o g ( 1 + k i x 0 − x ) , 其 中 0 &lt; x &lt; x 0 g ′ ( x ) = − l o g ( 1 + k i x 0 − x ) + ( x 0 − x ) 1 1 + k i x 0 − x ⋅ k i ( x 0 − x ) 2 &ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace; = − l o g ( 1 + k i x 0 − x ) + k i x 0 − x + k i g ′ ′ ( x ) = − k i ( x 0 − x ) 2 ⋅ 1 1 + k i x 0 − x + k i ( x 0 − x + k i ) 2 &ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace; = k i [ − 1 ( x 0 − x ) 2 + k i ( x 0 − x ) + 1 ( x 0 − x + k i ) 2 ] &ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace; = k i − ( x 0 − x + k i ) 2 + ( x 0 − x ) 2 + k i ( x 0 − x ) [ ( x 0 − x ) 2 + k i ( x 0 − x ) ] ( x 0 − x + k i ) 2 &ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace; = − k i 2 k i + ( x 0 − x ) [ ( x 0 − x ) 2 + k i ( x 0 − x ) ] ( x 0 − x + k i ) 2 &lt; 0 因 此 g ( x ) = ( x 0 − x ) l o g ( 1 + k i x 0 − x ) 仍 为 凹 函 数 。 \begin{array}{l} 令g(x) = ({x_0} - x)log(1 + \frac{{{k_i}}}{{{x_0} - x}}),其中0 &lt; x &lt; {x_0}\\ g&#x27;(x) = - log(1 + \frac{{{k_i}}}{{{x_0} - x}}) + ({x_0} - x)\frac{1}{{1 + \frac{{{k_i}}}{{{x_0} - x}}}} \cdot \frac{{{k_i}}}{{{{({x_0} - x)}^2}}}\\ \;\;\;\;\;\;\; = - log(1 + \frac{{{k_i}}}{{{x_0} - x}}) + \frac{{{k_i}}}{{{x_0} - x + {k_i}}}\\ g&#x27;&#x27;(x) = - \frac{{{k_i}}}{{{{({x_0} - x)}^2}}} \cdot \frac{1}{{1 + \frac{{{k_i}}}{{{x_0} - x}}}} + \frac{{{k_i}}}{{{{({x_0} - x + {k_i})}^2}}}\\ \;\;\;\;\;\;\;\;\; = {k_i}[ - \frac{1}{{{{({x_0} - x)}^2} + {k_i}({x_0} - x)}} + \frac{1}{{{{({x_0} - x + {k_i})}^2}}}]\\ \;\;\;\;\;\;\;\;\; = {k_i}\frac{{ - {{({x_0} - x + {k_i})}^2} + {{({x_0} - x)}^2} + {k_i}({x_0} - x)}}{{[{{({x_0} - x)}^2} + {k_i}({x_0} - x)]{{({x_0} - x + {k_i})}^2}}}\\ \;\;\;\;\;\;\;\;\; = - {k_i}^2\frac{{{k_i} + ({x_0} - x)}}{{[{{({x_0} - x)}^2} + {k_i}({x_0} - x)]{{({x_0} - x + {k_i})}^2}}} &lt; 0\\ 因此g(x) = ({x_0} - x)log(1 + \frac{{{k_i}}}{{{x_0} - x}})仍为凹函数。 \end{array} g(x)=(x0x)log(1+x0xki),0<x<x0g(x)=log(1+x0xki)+(x0x)1+x0xki1(x0x)2ki=log(1+x0xki)+x0x+kikig(x)=(x0x)2ki1+x0xki1+(x0x+ki)2ki=ki[(x0x)2+ki(x0x)1+(x0x+ki)21]=ki[(x0x)2+ki(x0x)](x0x+ki)2(x0x+ki)2+(x0x)2+ki(x0x)=ki2[(x0x)2+ki(x0x)](x0x+ki)2ki+(x0x)<0g(x)=(x0x)log(1+x0xki)
凹函数满足
f [ λ x 1 + ( 1 − λ ) x 2 ] ≥ λ f ( x 1 ) + ( 1 − λ ) f ( x 2 ) , ∀ x 1 , x 2 ∈ I , 0 ≤ λ ≤ 1 f[\lambda {x_1} + (1 - \lambda ){x_2}] \ge \lambda f({x_1}) + (1 - \lambda )f({x_2}),\forall {x_1},{x_2} \in I,0 \le \lambda \le 1 f[λx1+(1λ)x2]λf(x1)+(1λ)f(x2),x1,x2I,0λ1
g [ μ x 1 + ( 1 − μ ) x 2 ] ≥ μ g ( x 1 ) + ( 1 − μ ) g ( x 2 ) , ∀ x 1 , x 2 ∈ I , 0 ≤ μ ≤ 1 g[\mu {x_1} + (1 - \mu ){x_2}] \ge \mu g({x_1}) + (1 - \mu )g({x_2}),\forall {x_1},{x_2} \in I,0 \le \mu \le 1 g[μx1+(1μ)x2]μg(x1)+(1μ)g(x2),x1,x2I,0μ1
由凹函数图像特点可知实际的信道容量(曲线部分)与理论最大值(折线部分)有交点,而且只能有一个,唯一性得证。
由上述的推导可以得出结论:对于若干个电台,只有当所有分配的带宽与对应的功率成正比时,对应的频带分配方案是最优的。某子信道对应的功率越大,那么它分到的带宽也越大,便于传输更多的信息。
对于FDMA系统,可以得出类似的结论。前面构造的 f ( x i ) f(x_i) f(xi)可以推广到n维,对应频分多址的路数。
一般地,可以推广为:对于m个具有功率为 P 1 , P 2 , P 3 , . . . , P m P_1,P_2,P_3,...,P_m P1,P2,P3,...,Pm的信源以及功率N的环境噪声的高斯多接入系统,任何集合S对高斯公式平移为下列形式:
∑ i ∈ S R i = S ≤ C ( ∑ i ∈ S P i N ) \sum\limits_{i \in S} {{R_i} = S} \le C(\frac{{\sum\limits_{i \in S} {{P_i}} }}{N}) iSRi=SC(NiSPi)

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值