最优频带分配问题
设两个发送器分别具有 P 1 P_1 P1, P 2 P_2 P2的功率,分别使用两个不相交的频带带宽 W 1 W_1 W1, W 2 W_2 W2,,其中 W 1 + W 2 = W W_1+W_2=W W1+W2=W(总带宽),试计算最优频带分配方案,并画出该信道的容量区域,进一步讨论频分多址(frequency-division multiplexing)系统的最优频带分配方案。
最优频带分配问题解决方案
利用单用户的带宽有限信道的容量公式,下面的码率是可达的。
R
1
≤
W
1
log
(
1
+
P
1
N
W
1
)
                                                
(
1
)
R
2
≤
W
2
log
(
1
+
P
2
N
W
2
)
                                              
(
2
)
\begin{array}{l} {R_1} \le {W_1}\log (1 + \frac{{{P_1}}}{{N{W_1}}})\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(1)\\ {R_2} \le {W_2}\log (1 + \frac{{{P_2}}}{{N{W_2}}})\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(2)\\ \end{array}
R1≤W1log(1+NW1P1)(1)R2≤W2log(1+NW2P2)(2)
满足条件
W
1
+
W
2
=
W
=
c
o
n
s
t
P
1
+
P
2
=
P
=
c
o
n
s
t
\begin{array}{l} {W_1} + {W_2} = W = const\\ {P_1} + {P_2} = P = const\\ \end{array}
W1+W2=W=constP1+P2=P=const
则
R
1
+
R
2
≤
W
1
log
(
1
+
P
1
N
W
1
)
+
W
2
log
(
1
+
P
2
N
W
2
)
                        
(
∗
)
{R_1}{\rm{ + }}{R_2} \le {W_1}\log (1 + \frac{{{P_1}}}{{N{W_1}}}) + {W_2}\log (1 + \frac{{{P_2}}}{{N{W_2}}})\;\;\;\;\;\;\;\;\;\;\;\;(*)
R1+R2≤W1log(1+NW1P1)+W2log(1+NW2P2)(∗)
下面证明上面(*)式右边的码率可达,并给出等号成立的条件。
首先从物理直观上来看,由于
R
1
R_1
R1和
R
2
R_2
R2分别满足(1)式和(2)式,这两个不等式的右边分别是它们的理论可达码率,因此它们的加和一定小于各自的理论可达码率的加和。
但是,这只是直观上比较粗糙的理解,那么更严谨的问题在于: R 1 R_1 R1和 R 2 R_2 R2的理论可达码率是不是就是各自的理论可达码率的加和呢?换句话说,它们的最大值能不能同时取到?如果可以,那么什么时候同时取到,等号成立的条件是什么?
画出信道容量区域示意图,大致的趋势是实际的信道容量(曲线部分)小于等于理论最大值(折线部分),与横坐标的交点表示信道的全部功率用来传输用户1的信息(
R
2
=
0
R_{2}=0
R2=0),与纵坐标的交点表示信道的全部功率用来传输用户2的信息(
R
1
=
0
R_1=0
R1=0),在这两个点处显然曲线部分与折线部分的取值相等。
命题转化为证明:当
R
1
R_1
R1>0且
R
2
R_2
R2>0时,实际的信道容量(曲线部分)与理论最大值(折线部分)有且只有一个交点,且该交点对应的频带分配方案为
W
1
=
P
1
P
1
+
P
2
W
,
W
2
=
P
2
P
1
+
P
2
W
                    
(
4
)
{W_1} = \frac{{{P_1}}}{{{P_1} + {P_2}}}W,{W_2} = \frac{{{P_2}}}{{{P_1} + {P_2}}}W\;\;\;\;\;\;\;\;\;\;(4)
W1=P1+P2P1W,W2=P1+P2P2W(4)
首先证明存在性,即:当
R
1
R_1
R1和
R
2
R_2
R2 满足(4)式时,(3)式等号成立。
R
1
max
=
W
1
log
(
1
+
P
1
N
W
1
)
=
P
1
P
1
+
P
2
W
log
(
1
+
P
1
N
P
1
P
1
+
P
2
W
)
=
P
1
P
1
+
P
2
W
log
(
1
+
P
1
+
P
2
N
W
)
R
2
max
=
W
2
log
(
1
+
P
2
N
W
2
)
=
P
2
P
1
+
P
2
W
log
(
1
+
P
2
N
P
2
P
1
+
P
2
W
)
=
P
2
P
1
+
P
2
W
log
(
1
+
P
1
+
P
2
N
W
)
(
R
1
+
R
2
)
max
=
R
1
max
+
R
2
max
=
W
log
(
1
+
P
1
+
P
2
N
W
)
\begin{array}{l} {R_{1\max }} = {W_1}\log (1 + \frac{{{P_1}}}{{N{W_1}}}) = \frac{{{P_1}}}{{{P_1} + {P_2}}}W\log (1 + \frac{{{P_1}}}{{N\frac{{{P_1}}}{{{P_1} + {P_2}}}W}}) = \frac{{{P_1}}}{{{P_1} + {P_2}}}W\log (1 + \frac{{{P_1} + {P_2}}}{{NW}})\\ {R_{2\max }} = {W_2}\log (1 + \frac{{{P_2}}}{{N{W_2}}}) = \frac{{{P_2}}}{{{P_1} + {P_2}}}W\log (1 + \frac{{{P_2}}}{{N\frac{{{P_2}}}{{{P_1} + {P_2}}}W}}) = \frac{{{P_2}}}{{{P_1} + {P_2}}}W\log (1 + \frac{{{P_1} + {P_2}}}{{NW}})\\ {({R_1} + {R_2})_{\max }} = {R_{1\max }} + {R_{2\max }} = W\log (1 + \frac{{{P_1} + {P_2}}}{{NW}})\\ \end{array}
R1max=W1log(1+NW1P1)=P1+P2P1Wlog(1+NP1+P2P1WP1)=P1+P2P1Wlog(1+NWP1+P2)R2max=W2log(1+NW2P2)=P1+P2P2Wlog(1+NP1+P2P2WP2)=P1+P2P2Wlog(1+NWP1+P2)(R1+R2)max=R1max+R2max=Wlog(1+NWP1+P2)
再证明唯一性,即:实际的信道容量(曲线部分)与理论最大值(折线部分)有交点,而且只能有一个。
观察码率表达式
R
1
≤
W
1
log
(
1
+
P
1
N
W
1
)
R
2
≤
W
2
log
(
1
+
P
2
N
W
2
)
\begin{array}{l} {R_1} \le {W_1}\log (1 + \frac{{{P_1}}}{{N{W_1}}})\\ {R_2} \le {W_2}\log (1 + \frac{{{P_2}}}{{N{W_2}}})\\ \end{array}
R1≤W1log(1+NW1P1)R2≤W2log(1+NW2P2)
R
1
+
R
2
R_1+R_2
R1+R2的理论最大值可以写成
R
1
+
R
2
≤
W
1
log
(
1
+
P
1
N
W
1
)
+
(
W
−
W
1
)
log
(
1
+
P
−
P
1
N
(
W
−
W
1
)
)
{R_1}{\rm{ + }}{R_2} \le {W_1}\log (1 + \frac{{{P_1}}}{{N{W_1}}}) + (W - {W_1})\log (1 + \frac{{P - {P_1}}}{{N(W - {W_1})}})
R1+R2≤W1log(1+NW1P1)+(W−W1)log(1+N(W−W1)P−P1)
实际上,不等式右边的理论可达码率为凹函数,证明如下:
设
P
i
N
=
k
i
>
0
,
构
造
f
(
x
i
)
=
x
i
log
(
1
+
k
i
x
i
)
f
′
(
x
i
)
=
log
(
1
+
k
i
x
i
)
+
x
i
⋅
(
−
k
i
x
i
2
)
1
1
+
k
i
x
i
=
log
(
1
+
k
i
x
i
)
−
k
i
x
i
+
k
i
f
′
′
(
x
i
)
=
1
1
+
k
i
x
i
⋅
(
−
k
i
x
i
2
)
+
k
i
(
x
i
+
k
i
)
2
=
k
i
(
1
x
i
2
+
k
i
x
i
+
k
i
x
i
+
k
i
2
−
1
x
i
2
+
k
i
x
i
)
<
0
∴
f
(
x
)
为
凹
函
数
。
\begin{array}{l} 设\frac{{{P_i}}}{N} = {k_i} > 0,构造f({x_i}) = {x_i}\log (1 + \frac{{{k_i}}}{{{x_i}}})\\ f'({x_i}) = \log (1 + \frac{{{k_i}}}{{{x_i}}}) + {x_i} \cdot ( - \frac{{{k_i}}}{{{x_i}^2}})\frac{1}{{1 + \frac{{{k_i}}}{{{x_i}}}}} = \log (1 + \frac{{{k_i}}}{{{x_i}}}) - \frac{{{k_i}}}{{{x_i} + {k_i}}}\\ f''({x_i}) = \frac{1}{{1 + \frac{{{k_i}}}{{{x_i}}}}} \cdot ( - \frac{{{k_i}}}{{{x_i}^2}}) + \frac{{{k_i}}}{{{{({x_i} + {k_i})}^2}}} = {k_i}(\frac{1}{{{x_i}^2 + {k_i}{x_i} + {k_i}{x_i} + {k_i}^2}} - \frac{1}{{{x_i}^2 + {k_i}{x_i}}}) < 0\\ \therefore f\left( x \right)为凹函数。 \end{array}
设NPi=ki>0,构造f(xi)=xilog(1+xiki)f′(xi)=log(1+xiki)+xi⋅(−xi2ki)1+xiki1=log(1+xiki)−xi+kikif′′(xi)=1+xiki1⋅(−xi2ki)+(xi+ki)2ki=ki(xi2+kixi+kixi+ki21−xi2+kixi1)<0∴f(x)为凹函数。
令
g
(
x
)
=
(
x
0
−
x
)
l
o
g
(
1
+
k
i
x
0
−
x
)
,
其
中
0
<
x
<
x
0
g
′
(
x
)
=
−
l
o
g
(
1
+
k
i
x
0
−
x
)
+
(
x
0
−
x
)
1
1
+
k
i
x
0
−
x
⋅
k
i
(
x
0
−
x
)
2
              
=
−
l
o
g
(
1
+
k
i
x
0
−
x
)
+
k
i
x
0
−
x
+
k
i
g
′
′
(
x
)
=
−
k
i
(
x
0
−
x
)
2
⋅
1
1
+
k
i
x
0
−
x
+
k
i
(
x
0
−
x
+
k
i
)
2
                  
=
k
i
[
−
1
(
x
0
−
x
)
2
+
k
i
(
x
0
−
x
)
+
1
(
x
0
−
x
+
k
i
)
2
]
                  
=
k
i
−
(
x
0
−
x
+
k
i
)
2
+
(
x
0
−
x
)
2
+
k
i
(
x
0
−
x
)
[
(
x
0
−
x
)
2
+
k
i
(
x
0
−
x
)
]
(
x
0
−
x
+
k
i
)
2
                  
=
−
k
i
2
k
i
+
(
x
0
−
x
)
[
(
x
0
−
x
)
2
+
k
i
(
x
0
−
x
)
]
(
x
0
−
x
+
k
i
)
2
<
0
因
此
g
(
x
)
=
(
x
0
−
x
)
l
o
g
(
1
+
k
i
x
0
−
x
)
仍
为
凹
函
数
。
\begin{array}{l} 令g(x) = ({x_0} - x)log(1 + \frac{{{k_i}}}{{{x_0} - x}}),其中0 < x < {x_0}\\ g'(x) = - log(1 + \frac{{{k_i}}}{{{x_0} - x}}) + ({x_0} - x)\frac{1}{{1 + \frac{{{k_i}}}{{{x_0} - x}}}} \cdot \frac{{{k_i}}}{{{{({x_0} - x)}^2}}}\\ \;\;\;\;\;\;\; = - log(1 + \frac{{{k_i}}}{{{x_0} - x}}) + \frac{{{k_i}}}{{{x_0} - x + {k_i}}}\\ g''(x) = - \frac{{{k_i}}}{{{{({x_0} - x)}^2}}} \cdot \frac{1}{{1 + \frac{{{k_i}}}{{{x_0} - x}}}} + \frac{{{k_i}}}{{{{({x_0} - x + {k_i})}^2}}}\\ \;\;\;\;\;\;\;\;\; = {k_i}[ - \frac{1}{{{{({x_0} - x)}^2} + {k_i}({x_0} - x)}} + \frac{1}{{{{({x_0} - x + {k_i})}^2}}}]\\ \;\;\;\;\;\;\;\;\; = {k_i}\frac{{ - {{({x_0} - x + {k_i})}^2} + {{({x_0} - x)}^2} + {k_i}({x_0} - x)}}{{[{{({x_0} - x)}^2} + {k_i}({x_0} - x)]{{({x_0} - x + {k_i})}^2}}}\\ \;\;\;\;\;\;\;\;\; = - {k_i}^2\frac{{{k_i} + ({x_0} - x)}}{{[{{({x_0} - x)}^2} + {k_i}({x_0} - x)]{{({x_0} - x + {k_i})}^2}}} < 0\\ 因此g(x) = ({x_0} - x)log(1 + \frac{{{k_i}}}{{{x_0} - x}})仍为凹函数。 \end{array}
令g(x)=(x0−x)log(1+x0−xki),其中0<x<x0g′(x)=−log(1+x0−xki)+(x0−x)1+x0−xki1⋅(x0−x)2ki=−log(1+x0−xki)+x0−x+kikig′′(x)=−(x0−x)2ki⋅1+x0−xki1+(x0−x+ki)2ki=ki[−(x0−x)2+ki(x0−x)1+(x0−x+ki)21]=ki[(x0−x)2+ki(x0−x)](x0−x+ki)2−(x0−x+ki)2+(x0−x)2+ki(x0−x)=−ki2[(x0−x)2+ki(x0−x)](x0−x+ki)2ki+(x0−x)<0因此g(x)=(x0−x)log(1+x0−xki)仍为凹函数。
凹函数满足
f
[
λ
x
1
+
(
1
−
λ
)
x
2
]
≥
λ
f
(
x
1
)
+
(
1
−
λ
)
f
(
x
2
)
,
∀
x
1
,
x
2
∈
I
,
0
≤
λ
≤
1
f[\lambda {x_1} + (1 - \lambda ){x_2}] \ge \lambda f({x_1}) + (1 - \lambda )f({x_2}),\forall {x_1},{x_2} \in I,0 \le \lambda \le 1
f[λx1+(1−λ)x2]≥λf(x1)+(1−λ)f(x2),∀x1,x2∈I,0≤λ≤1
g
[
μ
x
1
+
(
1
−
μ
)
x
2
]
≥
μ
g
(
x
1
)
+
(
1
−
μ
)
g
(
x
2
)
,
∀
x
1
,
x
2
∈
I
,
0
≤
μ
≤
1
g[\mu {x_1} + (1 - \mu ){x_2}] \ge \mu g({x_1}) + (1 - \mu )g({x_2}),\forall {x_1},{x_2} \in I,0 \le \mu \le 1
g[μx1+(1−μ)x2]≥μg(x1)+(1−μ)g(x2),∀x1,x2∈I,0≤μ≤1
由凹函数图像特点可知实际的信道容量(曲线部分)与理论最大值(折线部分)有交点,而且只能有一个,唯一性得证。
由上述的推导可以得出结论:对于若干个电台,只有当所有分配的带宽与对应的功率成正比时,对应的频带分配方案是最优的。某子信道对应的功率越大,那么它分到的带宽也越大,便于传输更多的信息。
对于FDMA系统,可以得出类似的结论。前面构造的
f
(
x
i
)
f(x_i)
f(xi)可以推广到n维,对应频分多址的路数。
一般地,可以推广为:对于m个具有功率为
P
1
,
P
2
,
P
3
,
.
.
.
,
P
m
P_1,P_2,P_3,...,P_m
P1,P2,P3,...,Pm的信源以及功率N的环境噪声的高斯多接入系统,任何集合S对高斯公式平移为下列形式:
∑
i
∈
S
R
i
=
S
≤
C
(
∑
i
∈
S
P
i
N
)
\sum\limits_{i \in S} {{R_i} = S} \le C(\frac{{\sum\limits_{i \in S} {{P_i}} }}{N})
i∈S∑Ri=S≤C(Ni∈S∑Pi)