[算法整理]可能是最全的无监督/自监督单目深度估计方法汇总 - Part2:双目图像篇

本文汇总了17篇关于自监督学习的单目深度估计方法,特别是利用双目图像进行训练的论文,涉及双目方法、光度一致损失、左右一致性约束、自适应正则损失等技术,旨在理解场景、自动驾驶等领域的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

[算法整理] 可能是最全的自监督/无监督单目深度估计方法汇总 - Part2:双目图像篇

背景

借着最近开题写开题报告的机会,比较细致地整理了一下之前看过的自监督单目深度估计相关的论文。合计了一下,感觉写篇综述有点太耗时耗力,干脆就在这里分享出来好了。
论文列表持续更新中

广告时间:SMDE-Pytorch

一个基于Pytorch的自监督单目深度估计开发、训练和测试开源工具箱
GitHub
由于近一年都在做自监督单目深度估计的相关工作,自己也动手尝试了不少代码。但自监督单目深度估计一直没有一个像MMsegmentation一样的囊括各种方法的开发工具箱。既然没有那就自己造一个!

  • 对于只是想尝试或者体验一下效果的人,该工具箱可以通过简单的配置和命令实现对你自己图像的深度估计。
  • 对于科研工作者,该工具箱中提供最近流行方法的预训练模型,以及统一的测试代码,可以方便地进行对比。
  • 对于想进一步开发的人,该工具箱可以方便地替换网络结构,损失函数等部分,让你更快速地进行探索和实验(尽请期待)。

工具箱内容持续更新中
如果你对这个工具箱感兴趣,或者觉得这篇汇总有帮助,请到我们的GitHub仓库上留下一个Star催更~

自监督学习的单目深度估计

单目深度估计的目标是从一幅给定的图像中预测一幅深度图,表示图像中每个像素对应的场景与相机之间的距离。基于自监督学习的单目深度估计方法使用深度网络模型完成稠密深度的预测,并且在训练阶段不需要带有深度真值的训练样本,而采用视频序列中的连续帧或双目相机拍摄的图像对作为输入,以图像重建作为目标对深度网络模型进行训练。
根据训练时使用的样本形式,基于自监督学习的单目深度估计方法可以大致被分为两类:采用视频序列训练的方法和采用双目图像训练的方法。

采用双目图像训练的方法

采用双目图像训练的方法在训练阶段以双目相机拍摄的图像对作为训练样本。不同于视频序列图像之间相机运动的位姿未知,拍摄双目图像的相机相对位置是固定的,所以采用双目图像训练的方法只需要预测目标图像的深度图。考虑到双目图像中像素的视差与场景深度呈反比关系,所以这些方法来也可以预测视差图,并转换为深度图。

双目方法
1.Unsupervised cnn for single view depth estimation: Geometry to the rescue(ECCV 2016)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值