单链表 -- python实现

python实现单链表,后续会不断更新。
参考资料:《数据结构与算法——Python原因描述》-- 裘宗燕
单链表结构示意图:
在这里插入图片描述
代码实现:

# -*- coding: utf-8 -*-
"""
Created on 2019.9.21
author: 双皮奶
"""

class LNode():
    """结点类"""
    def __init__(self, elem, next_=None):  #存放元素数据
        self.elem = elem  #next是下一个节点的标识
        self.next = next_


class Single_LinkList():
    def __init__(self):  # 头节点定义为私有变量
        self._head = None

    def is_empty(self):  # 判断链表是否为空
        return self._head is None

    def length(self):  # 输出表的长度
        p = self._head
        n = 0  # 计数
        while p is not None:
            n += 1
            p = p.next
        return n

    def prepend(self, elem):  # 在表头插入数据
        self._head = LNode(elem, self._head)

    def pop(self):  # 删除表头结点并返回这个结点里的数据
        if self._head is None:  # 判断表是否为空
            print("表为空!")
            return
        e = self._head.elem  # 获取结点数据
        self._head = self._head.next  # 删除结点
        return e

    def append(self, elem):  # 在尾部添加一个节点
        if self._head is None:  # 判断表是否为空
            self._head = LNode(elem)
            return
        p = self._head
        while p.next is not None:  # 定位到表尾
            p = p.next
        p.next = LNode(elem)

    def pop_last(self):  # 删除表中最后的元素
        if self._head is None:  # 判断表是否为空
            print("表为空!")
            return
        p = self._head
        if p.next is None:  # 表中只有一个元素
            e = p.elem
            self._head = None
            return e
        while p.next.next is not None:  # 定位倒数第二个元素
            p = p.next
        e = p.next.elem
        p.next = None
        return e

    def insert(self, pos, elem):  # 在指定位置插入结点
        if pos < 0 or pos > self.length():  # 位置超出范围
            print('位置超出范围')
            return
        if pos == 0:  # 表头插入
            self.prepend(elem)
        elif pos == self.length():  # 尾部插入
            self.append(elem)
        else:  # 找到指定位置
            p = self._head
            n = 0
            e = LNode(elem)
            while n < (pos-1):
                n += 1
                p = p.next
            e.next = p.next  # 先将新结点的next指向插入位置的结点
            # 将插入位置的前一个节点的next指向新节点
            p.next = e

    def delete(self, pos):  # 删除指定位置的结点
        if pos < 0 or pos >= self.length():  # 位置超出范围
            print('位置超出范围')
            return
        if pos == 0:  # 删除第一个元素
            self.pop()
        elif pos == self.length() - 1:  # 删除最后一个元素
            self.pop_last()
        else:  # 找到指定位置
            p = self._head
            n = 0
            while n < (pos-1):
                n += 1
                p = p.next
            p.next = p.next.next

    def printall(self):  # 输出链表内容
        p = self._head
        while p is not None:
            print(p.elem, end='')
            if p.next is not None:
                print(', ', end='')
            p = p.next
        print('')  # 换行
    
    def clear(self):  # 删除链表
        self._head = None
约瑟夫环是一个经典的算法问题,通常涉及到在一个有n个人的环形链表中,从第一个人开始按照顺序报数,每次跳过k个人,直到找到最后一个报到“1”的人。在Python中,我们可以使用循环单链表(Circular Doubly Linked List)来模拟这个过程。 以下是一个简单的实现步骤: 1. 初始化链表:创建一个循环单链表,包含n个节点,并给每个节点赋值从0到n-1。 2. 定义状态:维护两个变量,一个是当前轮到的人(初始值为0),另一个是报数步长k。 3. 循环报数:遍历链表,每次将当前节点的下一个节点设为指针,然后更新当前节点为 `(current_node + k) % n`,如果到达了头节点并且值等于1,那么找到了结果。 4. 返回结果:链表中的某个节点值为1,就是约瑟夫问题的答案。 以下是简单的Python代码实现: ```python class Node: def __init__(self, value): self.value = value self.next = None self.prev = None def josephus(n, k): # 创建循环链表 nodes = [Node(i) for i in range(n)] head = tail = nodes[0] for node in nodes[1:]: node.prev = node.next node.next = head head.next = node head = node current = head while True: if current.value == 1: break current = current.next if current != tail else head current = (current.next + k - 1) % n # 跳过k个节点 return current.value # 示例 n = 7 k = 3 result = josephus(n, k) print(f"当n={n}, k={k}时,第一个报到1的人的位置是{result}。") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值