数学上,把形如的函数称为幂函数。幂函数的规律在博文[1]中已作说明。简单地说,
前提下,当
时幂函数下凸递增,
时线性递增,
时上凸递增,
时为常值函数,
时递减,与坐标系的
轴和
轴的正方向无限接近。此外,幂函数必经过点
。
幂函数的积分是
,其中
是常数项。本文研究函数
的性质。为了便于研究,我们希望无论
取何值,
都能经过一个固定的点,让各函数之间易于比较其单调性,增减速度。这里令
,则
。因此,定义一种幂函数的积分型函数为
。这里只研究
的情况。
函数图像及分析
当取不同值时,
的图像如下
从图中可以看出,无论如何取值,幂函数的积分型函数在
上均单调递增,但增速不同。当然,由于该类函数是由幂函数积分而成,其导数作为幂函数,在
时必
,所以单调递增。
增速
关于函数的增速,应当将其分为两部分:第一部分是,第二部分是
。从图中也看出,
越大,当
接近
时,其值越大,离
越近,说明在
上的增速越低。这一点也符合幂函数在
上的值,
时
越大越下凸,说明值越小;
时
越小(绝对值越大),曲线越高。关于这一点,可以参考博文[2]的第一张关于幂函数图像的图。
上下限值
将函数图像进行放大和缩小,观察各函数在接近
时的下限值,以及在
趋于无穷时的上限值。
从该图看,紫线,粉线,红线,橘红色线,在处到了某点随即终止了。但另外四根线,都在向下无限延伸。说明当
时,幂函数的积分函数在
时会无限趋于
,无下限值;但
时有下限值。
从该图看,淡绿线,绿线,深绿线,蓝线在时,并没有无限向上延伸,而是向某一个有限大的常数逼近。但另外四根线,都在向上无限延伸。说明当
时,幂函数的积分函数在
时会无限趋于
,无上限值;但
时有上限值。
总之:
下限值 | 无 | 有 |
上限值 | 有 | 无 |
其原因,求极限即可得出。
。当
时
,
时
。
时情况刚好相反。
极限情况
上一节提到了和
时的上下限值的情况。那么,此类函数能否
?如果能,那么这个函数性质应当在
和
之间。所以,是既有上限值又有下限值,还是即无上限值,又无下限值?
对于,当
时,分子和分母均为
,属于
的未定式。此时,应当用极限法求出表达式。
根据洛必达法则[3]:
这也符合一个特殊幂函数的积分:
显然,该函数既没有上限值,也没有下限值。
把这个特殊的幂函数的积分函数的图像加入:
显然,这个黄色的函数曲线刚好位于橘黄色和淡绿色的曲线之间,其函数性质也位于和
之间。
那么,当时,函数会如何?
还是用该式
令,则当
时,
;当
时,则
,属于未定式;当
时,
。简单地说,
令,则当
时,
;当
时,则
,属于未定式;当
时,
。简单地说,
总结
幂函数的积分函数可写为。特别的,当
时,
。
时,
无上限值,有下限值;
时,
无下限值,有上限值;
时,无下限值,无上限值。