幂函数的积分型函数

数学上,把形如f(x)={x^n}的函数称为幂函数。幂函数的规律在博文[1]中已作说明。简单地说,x>0前提下,当n>1时幂函数下凸递增,n=1时线性递增,0<n<1时上凸递增,n=0时为常值函数,n<0时递减,与坐标系的x轴和y轴的正方向无限接近。此外,幂函数必经过点(1,1)

幂函数x^n的积分是\int x^ndx={x^{n+1}\over n+1}+C,其中C是常数项。本文研究函数\phi_n (x)={x^n\over n}+D的性质。为了便于研究,我们希望无论n取何值,\phi_n(x)都能经过一个固定的点,让各函数之间易于比较其单调性,增减速度。这里令\phi _n(1)=0,则D=-{1\over n}。因此,定义一种幂函数的积分型函数为\phi_n(x)={x^n-1\over n}。这里只研究x>0的情况。

函数图像及分析

n\neq0取不同值时,\phi_n(x)的图像如下

从图中可以看出,无论n如何取值,幂函数的积分型函数在(0,+\infty)上均单调递增,但增速不同。当然,由于该类函数是由幂函数积分而成,其导数作为幂函数,在x>0时必>0,所以单调递增。

增速

关于函数的增速,应当将其分为两部分:第一部分是x\in (0,1],第二部分是x\in[1,+\infty)。从图中也看出,n越大,当x接近0时,其值越大,离0越近,说明在x\in (0,1]上的增速越低。这一点也符合幂函数在x\in (0,1]上的值,n>0n越大越下凸,说明值越小;n<0n越小(绝对值越大),曲线越高。关于这一点,可以参考博文[2]的第一张关于幂函数图像的图。

上下限值

将函数图像进行放大和缩小,观察各函数在x接近0时的下限值,以及在x趋于无穷时的上限值。

从该图看,紫线,粉线,红线,橘红色线,在x\rightarrow 0处到了某点随即终止了。但另外四根线,都在向下无限延伸。说明当n<0时,幂函数的积分函数在x\rightarrow 0时会无限趋于-\infty,无下限值;但n>0时有下限值。

从该图看,淡绿线,绿线,深绿线,蓝线在x\rightarrow +\infty时,并没有无限向上延伸,而是向某一个有限大的常数逼近。但另外四根线,都在向上无限延伸。说明当n>0时,幂函数的积分函数在x\rightarrow +\infty时会无限趋于+\infty,无上限值;但n<0时有上限值。

总之: 

幂函数的积分函数上下限值
n<0n>0
下限值
上限值

其原因,求极限即可得出。

\lim_{x\rightarrow 0}{x^n-1\over n}={\lim_{x\rightarrow 0}x^n-1\over n}。当n>0\lim_{x\rightarrow 0}x^n=0n<0\lim_{x\rightarrow 0}x^n=\inftyx\rightarrow +\infty时情况刚好相反。

极限情况

上一节提到了n>0n<0时的上下限值的情况。那么,此类函数能否n=0?如果能,那么这个函数性质应当在n>0n<0之间。所以,是既有上限值又有下限值,还是即无上限值,又无下限值?

对于\phi_n(x)={x^n-1\over n},当n=0时,分子和分母均为0,属于0\over 0的未定式。此时,应当用极限法求出表达式。

根据洛必达法则[3]

\lim_{n\rightarrow 0}{x^n-1\over n}=\lim_{n\rightarrow0}{x^n\ln x\over 1}=\ln x

这也符合一个特殊幂函数的积分:\int{1\over x}dx =\ln x + C

显然,该函数既没有上限值,也没有下限值。

把这个特殊的幂函数的积分函数的图像加入:

显然,这个黄色的函数曲线刚好位于橘黄色和淡绿色的曲线之间,其函数性质也位于n>0n<0之间。

那么,当n\rightarrow \infty时,函数会如何?

还是用该式\lim_{n\rightarrow\infty}{x^n\ln x}

n\rightarrow +\infty,则当x\in(0,1)时,\lim_{n\rightarrow\infty}{x^n\ln x}=0*\ln x=0;当x=1时,则\lim_{n\rightarrow\infty}{x^n\ln x}=1^{+\infty}*0,属于未定式;当x\in(1,+\infty)时,\lim_{n\rightarrow\infty}{x^n\ln x}=+\infty*+\infty=+\infty。简单地说,0\rightarrow {0*+\infty} \rightarrow +\infty

n\rightarrow -\infty,则当x\in(0,1)时,\lim_{n\rightarrow\infty}{x^n\ln x}=+\infty*-\infty=-\infty;当x=1时,则\lim_{n\rightarrow\infty}{x^n\ln x}=1^{-\infty}*0,属于未定式;当x\in(1,+\infty)时,\lim_{n\rightarrow\infty}{x^n\ln x}=0*\ln x=0。简单地说,-\infty\rightarrow {0*-\infty} \rightarrow 0

总结

幂函数的积分函数可写为\phi_n(x)={x^n-1\over n}。特别的,当n=0时,\phi_0(x)=\ln xn>0时,\phi_n(x)无上限值,有下限值;n<0时,\phi_n(x)无下限值,有上限值;n=0时,无下限值,无上限值。

参考资料

[1]幂函数规律总结_幂函数图像规律口诀-CSDN博客

[2]常见函数图像及性质_函数图像及性质总结-CSDN博客

[3]高等数学——详解洛必达法则_洛必达法则7种例题-CSDN博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值