深度学习
文章平均质量分 57
Darren T
这个作者很懒,什么都没留下…
展开
-
BN GN
BatchNorm:batch方向做归一化,算NHW的均值,对小batchsize效果不好;BN主要缺点是对batchsize的大小比较敏感,由于每次计算均值和方差是在一个batch上,所以如果batchsize太小,则计算的均值、方差不足以代表整个数据分布LayerNorm:channel方向做归一化,算CHW的均值,主要对RNN作用明显;InstanceNorm:一个channel内做归一化,算H*W的均值,用在风格化迁移;因为在图像风格化中,生成结果主要依赖于某个图像实例,所以对整个batch归一化不翻译 2021-01-03 14:43:47 · 194 阅读 · 0 评论 -
COCO数据集
json class_ids = coco.getCatIds() image_ids = coco.getImgIds() image = coco.loadImgs(i)[0] annotation_ids = coco.getAnnIds(imgIds=image["id"], catIds=1) annotations = coco.loadAnns(annotation_ids)原创 2021-01-03 14:37:47 · 144 阅读 · 1 评论 -
CornerNet Lite
CornerNet-Saccadesingle type and multi-object减少处理的像素的个数来提高inference的效率通过attention map找到合适大小的前景区域,然后crop出来作为下一阶段的精检图片CornerNet-Saccade 预测3张attention maps, 分别用于小尺寸(the longer side of its bounding box is less than 32 pixels)、中尺寸(between 32 and 96 pixe翻译 2021-01-03 14:36:14 · 105 阅读 · 0 评论 -
CornerNet
CornerNet-(目标检测->关键点检测)流程:ConvNet生成两组heat maps来预测不同分类下的corners,其中一组负责预测左上角,另一组负责预测右下角。backbone使用hourglass network。每组heatmap有C个channel,其中C是category数量,heatmap的size为。每个channel就是一个binary mask,表示location是否是这个分类下的corner。 ConvNet为每个corner预测embedding vec..翻译 2021-01-03 14:28:14 · 116 阅读 · 0 评论