《图处理加速架构研究》第四章部分阅读感想

本文分析了图神经网络中Aggregate和Combine阶段的特性,Aggregate阶段主要面临不规则访存问题,而Combine阶段侧重计算,特征为规则访问。PyG通过cuBLAS库优化Combine阶段的计算,torch-scatter库加速Aggregate阶段的不规则访存。尽管有硬件加速,但阶段间的并行性和数据局部性问题仍待解决。采样作为预处理步骤,其优化同样重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第 4 章 多模混合图神经网络加速架构

HyGCN具体的实现那一部分暂时还没看,主要是看了一部分加速架构的设计动机(4.1)、设计理念(4.2)、实验评估(4.5)、结果分析(4.6)、相关工作(4.7),想找一些和PyG相关的内容先看一下,也和之前在PyG上做的实验进行一个对比分析,检验一下之前想的和这里面写的是否一致。

Aggregate阶段和Combine阶段的特性分析

在第二章中,主要将GNN分为了Aggregate阶段和Combine阶段,一开始感觉有点不太对劲,因为他说的和MPNN中的好像不太一样,但是后来想了想,又和师姐讨论了一下,发现这么划分还是很有道理的,并且和PyG结合起来分析会更加明确一些。

文章里面一直在强调针对这两个阶段的加速问题,也通过实验分析出了每个阶段的特点。

Aggregate阶段因为涉及到邻居的访问,所以可以去类比图计算中的遍历,它的特点是动态计算和不规则访问。聚合阶段的特点也可以说是痛点在于「访存」。为什么这么说呢?因为节点的邻居是随机的,所以我们并不能“高瞻远瞩”去提前预知最近都会去访问哪些节点。我们访问节点的目的其实是要获取节点自身的特征/属性向量,然而,由于图的结构特性(一种访存的随机性),节点属性数据的时间局部性又很差。如果我们依旧使用原先的存储层次,会导致更多的DRAM访问、较高的L2/L3 cache不命中率以及大量无效的访存。

通过上面的分析,Aggregate阶段的特点也很明确了,就是不规则的访存,或者说是访存密集型的操作&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值