二维导热问题的ADI-TDMA算法

本文介绍了二维非稳态导热问题的解决方法——交替方向隐式(ADI)方法中的Peaceman-Rachford ADI格式,结合三对角矩阵算法(TDMA),详细阐述了如何沿着x和y方向进行求解,以实现高效的计算。通过实例展示了计算过程,并讨论了时间步长的选择策略。
摘要由CSDN通过智能技术生成

二维导热问题的ADI-TDMA算法

基本原理

对于多维非稳态导热问题,其时间项的离散格式有两种:显式格式隐式格式。在显式格式中,下一时间步的温度场由上一时间步的已知量求出,不需要求解代数方程组,但其时间步的选取受稳定性条件的限制,故通常只能取很小的时间步。隐式格式不受稳定性限制,但其需要对五对角矩阵(二维)或七对角矩阵(三维)进行求解,故每一时间步的计算量较大。

相比之下,交替方向隐式方法[1](alternating direction implicit, ADI)是在显式与隐式之间折中的一种方法。对于二维问题,先将 x x x方向的温度值按隐式处理, y y y方向的温度值按显式处理,这样就将二维问题转化为一系列并列的一维问题,可以直接使用三对角阵算法(TDMA)进行计算;然后再倒过来,将 y y y方向隐式, x x x方向显式处理。这种方法被称为Peaceman-Rachford ADI格式。可以证明,该方法对于二维问题是绝对稳定的,故没有稳定性限制,可以取较大的时间步长,同时每一时间步的计算量较小,可大幅加快计算速度。

下面介绍Peaceman-Rachford ADI格式下二维非稳态导热方程的求解过程。

基于有限体积法的全隐离散方程可表示为:
a P 0 ( T P − T P 0 ) = a E ( T E − T P ) − a W ( T P − T W ) + a N ( T N − T P ) − a S ( T P − T S ) + S Δ x Δ y a_P^0(T_P-T_P^0)=a_E(T_E-T_P)-a_W(T_P-T_W)+a_N(T_N-T_P)-a_S(T_P-T_S)+S\Delta x\Delta y aP0(TPTP0)=aE(TETP)aW(TPTW)+aN(TNTP)aS(TPTS)+SΔxΔy

(1)沿 x x x方向求解:

先取 Δ t / 2 \Delta t/2 Δt/2的时间步长,对x方向做隐式处理,求解温度场的中间量 U U U,则全隐离散方程可改成:
a P 0 ( U P − T P 0 ) = a E ( U E − U P ) − a W ( U P − U W ) + a N ( T N 0 − T P 0 ) − a S ( T P 0 − T S 0 ) + S Δ x Δ y a_P^0(U_P-T_P^0)=a_E(U_E-U_P)-a_W(U_P-U_W)+a_N(T_N^0-T_P^0)-a_S(T_P^0-T_S^0)+S\Delta x\Delta y aP0(UPTP0)=aE(UEUP)aW(UPUW)+aN(TN0TP0)a

  • 7
    点赞
  • 52
    收藏
    觉得还不错? 一键收藏
  • 6
    评论
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值