BigDecimal的一些问题
1.简介:
BigDecimal在Java中用的很多,该类对数字的精确度较高,日常开发中涉及到金融方面的信息,可以考虑使用BigDecimal。
2.遇到坑的场景再现
今天在使用BigDecimal进行加的时候出现了一个累加失败的情况,下边是我测试浮现场景的代码:
public class Test7 {
public static void main(String[] args) {
BigDecimal num=new BigDecimal(0);
BigDecimal num1=new BigDecimal(0);
//错误写法
num.add(new BigDecimal(100));
System.out.println("num:"+num);
//正确写法
num1=num1.add(new BigDecimal(100));
System.out.println("num1:"+num1);
}
}
运行结果:
3.问题分析:
通过上边的代码执行结果,不难发现,当直接使用 num.add(new BigDecimal(100)),运行了num+100,但该值没有地方存,相当于原地踏步,我们用一个变量来接这个处理结果,就可以了。以后用的时候注意哈,很容易写成 num.add(new BigDecimal(100))这样!
4.问题扩展
我同事遇到过使用BigDecimal在累加场景下,出现异常,会遇到BigDecimal不释放内存情况,我想这个应该是BigDecimal这个类的机制问题,一般来说,在方法中调用的类,当方法结束了,该方法中的东西也会释放掉;为了防止该情况发生,可以考虑使用try catch,将异常捕获,然后finally中执行BigDecimal变量重新赋值为0。简单代码如下:
public class Test7 {
public static void main(String[] args) {
BigDecimal num=new BigDecimal(0);
// BigDecimal num1=new BigDecimal(0);
// num.add(new BigDecimal(100));
// System.out.println("num:"+num);
// num1=num1.add(new BigDecimal(100));
// System.out.println("num1:"+num1);
//
try{
for(int i=0;i<10;i++){
num=num.add(new BigDecimal(i));
}
}catch(Exception e){
e.getMessage();
}finally {
//防止出现异常后,BigDecimal的累加变量不释放资源
num=new BigDecimal(0);
}
}
}
5.扩展知识:
BigDecimal的加减乘除
加法 add()函数
减法subtract()函数
乘法multiply()函数
除法divide()函数
绝对值abs()函数
用法:直接使用,注意和上边代码的add方法一样,使用方法后要用变量去接收,不然,执行的结果数据拿不到!
BigDecimal的保留小数方式:
常用的方式:使用BigDecimal的setScale方法
//下面的代码中的3表示保留三位小数
double f1 = num.setScale(3, BigDecimal.ROUND_HALF_UP).doubleValue();
对BigDecimal.ROUND_HALF_UP中的ROUND_HALF_UP做补充:
1、ROUND_UP
舍入远离零的舍入模式。
在丢弃非零部分之前始终增加数字(始终对非零舍弃部分前面的数字加1)。
注意,此舍入模式始终不会减少计算值的大小。
2、ROUND_DOWN
接近零的舍入模式。
在丢弃某部分之前始终不增加数字(从不对舍弃部分前面的数字加1,即截短)。
注意,此舍入模式始终不会增加计算值的大小。
3、ROUND_CEILING
接近正无穷大的舍入模式。
如果 BigDecimal 为正,则舍入行为与 ROUND_UP 相同;
如果为负,则舍入行为与 ROUND_DOWN 相同。
注意,此舍入模式始终不会减少计算值。
4、ROUND_FLOOR
接近负无穷大的舍入模式。
如果 BigDecimal 为正,则舍入行为与 ROUND_DOWN 相同;
如果为负,则舍入行为与 ROUND_UP 相同。
注意,此舍入模式始终不会增加计算值。
5、ROUND_HALF_UP
向“最接近的”数字舍入,如果与两个相邻数字的距离相等,则为向上舍入的舍入模式。
如果舍弃部分 >= 0.5,则舍入行为与 ROUND_UP 相同;否则舍入行为与 ROUND_DOWN 相同。
注意,这是我们大多数人在小学时就学过的舍入模式(四舍五入)。
6、ROUND_HALF_DOWN
向“最接近的”数字舍入,如果与两个相邻数字的距离相等,则为上舍入的舍入模式。
如果舍弃部分 > 0.5,则舍入行为与 ROUND_UP 相同;否则舍入行为与 ROUND_DOWN 相同(五舍六入)。
7、ROUND_HALF_EVEN 银行家舍入法
向“最接近的”数字舍入,如果与两个相邻数字的距离相等,则向相邻的偶数舍入。
如果舍弃部分左边的数字为奇数,则舍入行为与 ROUND_HALF_UP 相同;
如果为偶数,则舍入行为与 ROUND_HALF_DOWN 相同。
注意,在重复进行一系列计算时,此舍入模式可以将累加错误减到最小。
此舍入模式也称为“银行家舍入法”,主要在美国使用。四舍六入,五分两种情况。
如果前一位为奇数,则入位,否则舍去。
以下例子为保留小数点1位,那么这种舍入方式下的结果。
1.15>1.2 1.25>1.2
8、ROUND_UNNECESSARY
断言请求的操作具有精确的结果,因此不需要舍入。
如果对获得精确结果的操作指定此舍入模式,则抛出ArithmeticException。