自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(26)
  • 收藏
  • 关注

原创 深度学习中关于模型融合问题

模型融合即Ensemble Generation,指的是将多个不同的Base Model组合成一个Ensemble Model的方法。它可以同时降低最终模型的bias和Variance。从而在提高分数的同时又降低过拟合的风险。常见的Ensemble方法有以下几种:1.Bagging:使用训练数据的不同随机子集来训练每个Base Model,最后进行每个基本模型权重相同的投票,即随机森林原理...

2019-10-09 08:50:38 4647

原创 数据 结构之创建动态数组

抽象数据类型列表操作有:1.创建一个空列表 2.确定此列表是否为空 3.确定列表中的项目个数等。指令有:import ctypesclass DynamicArraydef init(self)‘create an empty arraty’self._n = 0 #sizeself._capacity = 10self._A = self._make_array(self._...

2019-09-15 17:37:28 218

原创 leetcode241题为运算表达式设置优先级

主要运用到了分治和递归。

2019-09-02 15:38:00 203

原创 leetcode69:x的平方根

主要方法是利用二分法

2019-09-02 10:42:45 166

转载 深度学习中激活函数的类型及导数含义

https://ml-cheatsheet.readthedocs.io/en/latest/activation_functions.html#elu通过上述网址中对激活函数的介绍清楚的了解每个函数的意义及优势。

2019-09-02 10:08:44 417

原创 leetcode75:颜色分类

给定一个包含红色、白色和蓝色,一共 n 个元素的数组,原地对它们进行排序,使得相同颜色的元素相邻,并按照红色、白色、蓝色顺序排列。此题中,我们使用整数 0、 1 和 2 分别表示红色、白色和蓝色。此题需要用到三个指针,p0、curr、p2。其中p0要求此指针指到元素之前所有元素为0;p0与curr之间为1;p2之后为2。...

2019-08-30 10:12:55 250

原创 LeetCode455:分发饼干问题

要求:孩子的胃口g必须小于饼干的尺寸,这样才会让孩子得到满足,并且每个孩子就分一块饼干。

2019-08-30 09:38:30 192

原创 leetcode347.前K个高频元素

这类问题主要是统计频率问题,常常会用到哈希表。

2019-08-30 09:23:03 131

原创 leetcode之215.数组中的第K个最大元素

找到第k大、小的时候,需要的是快速排序。

2019-08-29 21:34:21 135

原创 leetcode之167题:两数之和II-输入有序数组

对于这个题,有规律的数组,从小到大排列,可以用twopointer来做,一个点从0开始,另一个点从len-1开始,说白了就是一头一尾,往中间走,就涉及到i和j的和和‘target’比较,如果满足左右指针满足相加等于target就会返回目标数。...

2019-08-29 20:38:11 107

原创 最大似然估计与最小二乘的理解

最大似然估计,就是利用已知的样本结果,反推最有可能(最大概率)导致这样结果的参数值。例如:一个麻袋里有白球与黑球,但是我不知道它们之间的比例,那我就有放回的抽取10次,结果我发现我抽到了8次黑球2次白球,我要求最有可能的黑白球之间的比例时,就采取最大似然估计法:我假设我抽到黑球的概率为p,那得出8次黑球2次白球这个结果的概率为:P(黑=8)=p8*(1-p)2,现在我想要得出p是多少啊,很简单,...

2019-08-26 17:47:23 204

原创 再遇cuda9.0.cudnn.nvcc安装

近段时间因为之前使用的是cuda8.0,由于工作需要,安装tensorflow-gpu1.11.0版本,需要cuda9.0,遇到好多问题,现在给出解决方法:#cudnn安装wget https://developer.nvidia.com/compute/machine-learning/cudnn/secure/v7.4.1.5/prod/9.0_20181108/cudnn-9.0-li...

2019-07-18 10:48:00 615

原创 数据挖掘中的指标--分类器中的ROC曲线及相关指标(ROC、AUC、ACC)

ROC又叫受试者工作特征曲线。它是用来验证一个二分类器模型的性能指标,也就是说,给出一个模型,输入一个模型,输入已知正负类的一组数据,并通过对比模型对改组数据进行的预测,衡量这个模型的性能。相关内容如下图:ROC曲线如何画?1.给定一个初始阈值(一般是从0%开始)2.根据分类结果画上图中第一个表格,然后根据上面的式子算法TPR和FPR。由TPR和FPR可以确定一个点,在...

2019-07-07 20:44:20 2070

原创 机器学习之神经网络

上图是M-P神经元模型,在这个模型中,神经元接收来自n个其他神经元传递过来的输入信号,这些输入信号通过带权重的连接进行传递,神经元接收到的总输入值将与神经元的阈值进行比较,然后通过“激活函数”处理以产生神经元的输出。感知机与多层网络感知机由两层神经元组成,输入层接收外界输入信号后传递给输出层,输出层是M-P神经元,也称“阈值逻辑单元”。给定训练数据集,权重w以及阈值可通过学习得到。...

2019-07-07 20:16:55 340

原创 windows和Linux下查看文件的MD5方法

windows方法:win键+r键输入cmd,输入:查看MD5值:certutil -hashfile 文件名 MD5查看SHA1 :certutil -hashfile 文件名 SHA1查看SHA256 :certutil -hashfile 文件名 SHA256Linux方法,进入目录输入:md5sum 文件名...

2019-07-06 14:39:57 2951

原创 机器学习之集成学习

集成学习通过构建并结合多个学习器来完成学习任务。集成学习示意图如下图: 集成学习示意图一般结构:先产生一组“个体学习器”,再用某种策略将它们结合起来。个体学习器通常由一个现有的学习算法从训练数据产生,注意的是集成中只包含同种类型的个体学习器,例如“决策树集成”中全是决...

2019-07-04 10:37:22 367

原创 机器学习中决策树介绍

决策树是一类常见的机器学习方法。决策树是基于树结构来进行决策的,决策过程的最终结论对应了所希望的判定结果。决策过程中提出的每个判定问题都是对某个属性的“测试”,每个测试的结果或是导出最终结论,或是导出进一步的判定问题,其考虑范围是在上次决策结果的限定范围之内。 一般的,一个决策树包含一个根节点,若干个内部结点和若干个叶结点;叶结点对应于决策结果,其他每个结点则对应于一个属性测...

2019-06-30 17:24:49 285

原创 tensorflow-gpu版本、keras版本与cuda匹配

关于tensorflow-gpu安装,对于cuda有严格要求,下面把对应版本匹配展示一下:在安装keras时可根据要求匹配tensorflow-gpu: tensorflow 1.5 和keras 2.1.4 tensorflow 1.4和keras 2.1.3 tensorflow 1.3和keras 2.1.2 tensorflo...

2019-06-27 20:37:06 28660 6

原创 ImageNet中的Top-1与Top-5

在阅读和深度学习相关的文章的时候,常常在结果的评价指标上提出Top-1与Top-5。那么代表什么意思呢?Top-5错误率:指的是对一张图片,预测概率中前五个里面有正确的答案,即为正确Top-1错误率:一张图片,如果概率最大的是正确的答案,认为正确。...

2019-06-24 11:47:38 1083

原创 多分类学习

分类学习器又叫“学习器”,有些二分类学习方法可以直接推广到多分类,更多情形下,我们是根据一些基本策略,利用二分类学习器来解决多分类问题。考虑N个类别C1,C2,.....,Cn。多分类学习的基本思路是“拆解法”,即将多分类任务拆解为若干个二分类任务求解。具体来说,先对问题进行拆分,然后为拆出的每个分类任务训练一个分类器;在测试时,对这些分类器的预测结果进行集成以获得最终的分类结果。那么,如何...

2019-06-24 09:47:58 851

原创 机器学习之模型性能度量

对机器学习的泛化性能进行评估,不仅需要切实可行的实验估计方法,还要有衡量模型泛化能力的评价标准,即性能度量。它反映了任务需求,在对比不同模型的能力时,使用不同的性能度量往往会导致不同的评判结果;因此,模型的选择与性能的好坏不仅取决于算法和数据,还取决于任务的需求。 一般,对于回归任务来说,性能度量有“均方误差”,那对于分类任务来说,性能度量有错误率和精度;查准率(准确率)、查全率(召回率)...

2019-06-22 21:27:41 478

转载 Docker的使用

1.资源进入docker官网:https://www.docker.com/docker APIhttps://docs.docker.com/2.DockerHub镜像制作1.基础镜像制作https://github.com/fusimeng/Docker/blob/master/notes/base.md2.框架制作https://github.c...

2019-06-20 09:58:34 91

原创 机器学习之模型评估与选择

本次主要针对西瓜书中机器学习中的模型评估与选择进行学习1.经验误差与过拟合所谓的“误差”指的是学习器的实际预测输出与样本的真实输出之间的差异。学习器在训练集上的误差称为“训练误差 ”或“经验误差”,在新样本上的误差称为“泛化误差”。对于机器学习,得到一个泛化误差小的学习器是必要的。因此,在新样本上获得一个良好的分类器的目的就是在训练样本中尽可能学出适用于所有潜在样本的“普遍规律”,这样才能...

2019-06-20 09:39:52 342

原创 机器学习相关知识记录

在读机器学习相关的书籍的时候,对机器学习相关的概念进行了总结:1.首先,对于机器学习,必须要有数据,也就是数据集。也成“示例“或“样本”。其中反映时间 或在某方面的表现或性质的事项称为“属性"或“特征”,另外,属性张成的空间称为“属性空间”或“样本空间”。那么属性张成的空间就是事件的特征空间,每个样本都可以在此空间中找到自己对应的位置,那么每一个示例就称为“特征向量”。2.从数据中学习到模型的...

2019-06-19 18:30:47 145

原创 安装tensorflow-gpu

在用tensorflow的时候,可能常常用到gpu,下面将介绍如何利用tensorflow-gpu。有两种方法:(1):pip install tensorflow-gpu版本,但是安装过程贼慢,甚至会安装失败。个人不建议使用。(2)使用pypi源安装:例如:pip install -i https://pypi.tuna.tsinghua.edu,cn/simple tensorflow-g...

2019-06-18 09:48:06 173

原创 安装cuda和cudnn

记录写博客的第一天:今天主要给大家介绍一下与图像相关的深度学习有关的知识。首先,因为图像的分类,检测等任务依赖于计算机大量的计算能力,所以必须依托于GPU高性能运算。那么,怎么才能让自己的电脑能顺利的用上实验室所提供的GPU呢?下面我将介绍如何安装适合自己电脑GPU的驱动:安装之前首先要确定你需要的安装的CUDA和Cudnn的版本,这和后面需要安装的tensorflow等有直接联系。1.#...

2019-06-18 09:21:19 1342 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除