新冠数据整理和简单分析(二)——使用SIR及其变种
这篇文章主要是想介绍一下使用SIR模型对新冠病毒传播建模。在数据分析方面的研究目前绝大多数都是基于SIR模型变种来模拟病毒传播的过程。所以,我准备以新冠病毒的数据为例,简单介绍一下SIR以及其变种的应用。
准备工作
数据来源和参考
SIR模型是一个简单的传染病模型,它将人群分为三类,分别是易感染者(Susceptibles)、感染者(Infectives)、移除者(Removed)。为了得到相应这三类人群的数据,我通过Kaggle的开源数据集对当前的数据进行了补充。以下是我的数据链接。
病例数据
人口
人口结构
管控措施
在本文的前半部分,我主要参考了Lisphilar的notebook。而后半部分我主要参考了几篇不错的COVID19传播建模论文。跟大家分享一下我的收获。
使用的工具和包
from collections import defaultdict
from datetime import timedelta, datetime
from dateutil.relativedelta import relativedelta
from pprint import pprint
import warnings
from fbprophet import Prophet
from fbprophet.plot import add_changepoints_to_plot
import pystan.misc # in model.fit(): AttributeError: module 'pystan' has no attribute 'misc'
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import matplotlib
from matplotlib.ticker import ScalarFormatter
%matplotlib inline
import numpy as np
import optuna
optuna.logging.disable_default_handler()
import pandas as pd
import dask.dataframe as dd
pd.plotting.register_matplotlib_converters()
import seaborn as sns
from scipy.integrate import solve_ivp
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.cluster import KMeans
定义函数和方法
为了简化介绍和缩短文章长度,我只将主要的函数放在这里。
SIR模型
class SIR(ModelBase):
NAME = "SIR"
VARIABLES = ["x", "y", "z"]
PRIORITIES = np.array([1, 1, 1])
MONOTONIC = ["z"]
def __init__(self, rho, sigma):
super().__init__()
self.rho = rho
self.sigma = sigma
def __call__(self, t, X):
# x, y, z = [X[i] for i in range(len(self.VARIABLES))]
# dxdt = - self.rho * x * y
# dydt = self.rho * x * y - self.sigma * y
# dzdt = self.sigma * y
dxdt = - self.rho * X[0] * X[1]
dydt = self.rho * X[0] * X[1] - self.sigma * X[1]
dzdt = self.sigma * X[1]
return np.array([dxdt, dydt, dzdt])
@classmethod
def param_dict(cls, train_df_divided=None, q_range=None):
param_dict = super().param_dict()
q_range = super().QUANTILE_RANGE[:] if q_range is None else q_range
if train_df_divided is not None:
df = train_df_divided.copy()
# rho = - (dx/dt) / x / y
rho_series = 0 - df["x"].diff() / df["t"].diff() / df["x"] / df["y"]
param_dict["rho"] = rho_series.quantile(q_range)
# sigma = (dz/dt) / y
sigma_series = df["z"].diff() / df["t"].diff() / df["y"]
param_dict["sigma"] = sigma_series.quantile(q_range)
return param_dict
param_dict["rho"] = (0, 1)
param_dict["sigma"] = (0, 1)
return param_dict
@staticmethod
def calc_variables(df):
df["X"] = df["Susceptible"]
df["Y"] = df["Infected"]
df["Z"] = df["Recovered"] + df["Fatal"]
return df.loc[:, ["T", "X", "Y", "Z"]]
@staticmethod
def calc_variables_reverse(df):
df["Susceptible"] = df["X"]
df["Infected"] = df["Y"]
df["Recovered/Deaths"] = df["Z"]
return df
def calc_r0(self):
if self.sigma == 0:
return np.nan
r0 = self.rho / self.sigma
return round(r0, 2)
def calc_days_dict(self, tau):
_dict = dict()
_dict["1/beta [day]"] = int(tau / 24 / 60 / self.rho)
_dict["1/gamma [day]"] = int(tau / 24 / 60 / self.sigma)
return _dict
SIRD模型
class SIRD(ModelBase):
NAME = "SIR-D"
VARIABLES = ["x", "y", "z", "w"]
PRIORITIES = np.array([1, 10, 10, 2])
MONOTONIC = ["z", "w"]
def __init__(self, kappa, rho, sigma):
super().__init__()
self.kappa = kappa
self.rho = rho
self.sigma = sigma
def __call__(self, t, X):
# x, y, z, w = [X[i] for i in range(len(self.VARIABLES))]
# dxdt = - self.rho * x * y
# dydt = self.rho * x * y - (self.sigma + self.kappa) * y
# dzdt = self.sigma * y
# dwdt = self.kappa * y
dxdt = - self.rho * X[0] * X[1]
dydt = self.rho *