计算机视觉算法开发到应用实现

本文探讨了计算机视觉中目标检测的关键步骤,包括样本创建、特征提取、分类器训练和目标检测过程。同时,阐述了GPU在计算机视觉算法中的应用,特别是CUDA平台如何加速神经网络计算,利用CUDNN库优化卷积操作,以提高效率。
摘要由CSDN通过智能技术生成

目录

1.简介概述

2.目标检测

3.GPU应用


1.简介概述

        计算机视觉是使用计算机及相关设备对生物视觉的一种模拟,是人工智能领域的一个要部分,它主要任务是通过对采集的图片或视频进行处理以获得相应场景的信息。传统的计算机视觉系统的主要目标是从图像中提取特征,包括边缘检测、角点检测、基于颜色的分割等子任务。这种方法的主要问题是需要告诉系统在图像中寻找哪些特性。在实现中,算法性能差可以通过微调来解决,但是,这样的更改需要手工完成,并且针对特定的应用程序进行硬编码,这对高质量计算机视觉的实现造成了很大的障碍。当前,深度学习系统在处理一些相关子任务方面取得了重大进展。深度学习最大的不同之处在于,它不再通过精心编程的算法来搜索特定特征,而是训练深度学习系统内的神经网络。

2.目标检测

目标检测分为以下几个步骤:

1).训练分类器所需训练样本的创建:

        训练样本包括正样本和负样本;其中正例样本是指待检目标样本(例如人脸或汽车等),负样本指其它不包含目标的任意图片(如背景等),所有的样本图片都被归一化为同样的尺寸大小(例如,20x20)。

2)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值